The Dynamics of Sovereign Debt Crises and Bailouts

Francisco Roch and Harald Uhlig∗
University of Chicago, CentER, NBER and CEPR

VER Y PRELIMINARY
COMMENTS WELCOME

First draft: January 6, 2011
This revision: September 2, 2011

∗This is preliminary indeed. Originally, the title was "The dynamics of sovereign debt crises in a monetary union." The results have not yet been checked with sufficient care. Address: Francisco Roch, Department of Economics, University of Chicago, 1126 East 59th Street, Chicago, IL 60637, U.S.A, email: froch@uchicago.edu. Harald Uhlig, Department of Economics, University of Chicago, 1126 East 59th Street, Chicago, IL 60637, U.S.A, email: huhlig@uchicago.edu. The research of Harald Uhlig has been supported by the NSF grant SES-0922550. Harald Uhlig has an ongoing consulting relationship with a Federal Reserve Bank, the Bundesbank and the ECB.
Abstract

Inspired by the European debt crisis of 2010, this paper provides a theoretical framework to analyze the dynamics of the sovereign debt crisis of a member country in a monetary union and the role of various bailout mechanisms. To do so, we draw on three sets of literatures. First, Arellano (2008) has shown how “bad luck” can lead to a sovereign debt crisis. Second, Cole-Kehoe (1996,2000) have shown how multiplicity of equilibria, when debt enters a “crisis zone” can lead to dramatic changes in debt pricing. Finally, the impatience of policy makers as in Beetsma and Uhlig (1999) provides a reason why a country would be in a crisis zone in the first place. We analyze the unfolding and the debt dynamics, if debt pricing is left to markets alone. Next, we discuss the dynamics, if there is intervention by some bail-out mechanism. While scenarios and mechanisms can be found that, in essence, restore the “good” equilibrium of Cole-Kehoe and succeed in bringing the country out of the crisis zone, other scenarios show that the bailout facility only postpones the day of reckoning. It provides temporary relieve to the country in its desire to maintain a high level of government consumption, but leaves the default situation in a very similar and precarious situation as before, once the initial relief is “used up”. We finally discuss contagion and amplification mechanisms in a monetary union.

Keywords:

JEL codes:
1 Introduction

In 2010, doubts spread on financial markets that Greece will be able to repay its sovereign debt. The prospect of a Greek sovereign default within the Euro zone led to fears of a contagion to other Euro zone member countries, notably Ireland, Portugal and perhaps Spain. Furthermore, a sovereign default within the Euro zone was judged to possibly endanger the European monetary system, its common currency as well as disrupt payment systems within Europe. Due to these concerns, the finance ministers of Europe approved a rescue package for Greece and created the European Financial Stability Facility (EFSF) in May 2010, in order to prevent a default as well as to return yield spreads to pre-crisis levels. The spreads, however, have remained persistently high and markets appear to judge the prospect of a default and/or an exit from the Euro zone as probable: events may meanwhile have surpassed this description. A survey of the issues and empirics of the situation can be found in Lejour et al (2010) and Argyrou and Kontonikas (2011).

This paper is motivated by these developments and seeks to understand the dynamics of sovereign debt crises in a union of countries. There are too many pieces here to combine in one single paper. Instead, I shall proceed by first shedding light on sovereign default crises with the possibility of contagion as well as bailouts. I then shall discuss amplification mechanisms, resulting from a banking system relying on sovereign debt, using a broad brush.

The analysis of the dynamics of a sovereign debt crisis builds on and moderately extends three branches of the literature in particular. First, Arellano (2008) has analyzed the dynamics of sovereign default under fluctuations in income, and shown that defaults are more likely when income is low\(^1\). Tirole (2002) has analyzed the need for liquidity provision in financial crises. Sec-

\(^1\)That may sound unsurprising, but is actually not trivial. Indeed the recursive contract literature typically implies incentive issues for contract continuation at high rather than low income states, see e.g. Ljungqvist-Sargent (2004).
ond, Cole and Kehoe (1996, 2000) have pointed out that debt crises may be self-fulfilling: the fear of a future default may trigger a current rise in default premia on sovereign debt and thereby raise the probability of a default in the first place. Both theories imply, however, that countries would have a strong incentive to avoid default-triggering scenarios in the first place. For example, Greiner et al (2007) have calculated that current debt levels in EMU member countries are probably sustainable in principle. I therefore build on the political economy theories of the need for debt constraints in a monetary union of short-sighted fiscal policy makers as in to provide a rationale for a default-prone scenario.

Indeed, there certainly has not been a lack of analysis and warning of academic economists about the risk of a debt build-up and ensuing problems in a monetary union. Fiscal policy in a monetary union is crucial: indeed, the original Mundell-Fleming case for or against a monetary union needs to be rethought in light of fiscal interventions, as Cooper and Kempf (2004) have argued. But this creates a host of challenges in turn. Beetsma and Uhlig (1999) point out that “it is hard to imagine the ECB standing by idly, while the debt pileup in a member country ... leads to debt downgrading or default”. Beetsma and Bovenberg (1999, 2001) point out that “monetary unification boosts the accumulation of public debt” and that “international [fiscal] risk sharing may be undesirable because it weakens fiscal discipline”. Uhlig (2003) analyzes the scenario of a sovereign default in a monetary union and its repercussion for ECB policy. Cooper, Kempf and Peled (2009) argue that there will be fiscal spillovers in a monetary union, despite the best prior assurances. Cooper, Kempf and Peled (2010) therefore warn that “regional governments, anticipating central bank financing of their debt obligations, have an incentive to create excessively large deficits.”. This brief survey just scratches the surface: the existing literature is undoubtedly considerably larger. The literature now moves beyond the stage of warning
and instead embarks on sorting through the wreckage. This paper seeks to make a contribution to this.

Amplification and contagion is discussed in section 5.

2 A model of sovereign default dynamics

The model combines Arellano (2008) with Cole and Kehoe (2000), follows much of their specifications and insights, and allows for a multi-country extension as well as for the possibility of a bailout. I assume that there are \(j = 1, \ldots, J \) fiscal authorities, financing their expenditures with debt and taxes. Initially, I shall assume that there is a single country \(J = 1 \) and leave away the index \(j \): this will be generalized in section 5.

I assume that the fiscal authority finances government consumption \(c_t \geq 0 \) with tax receipts \(y_t \geq 0 \) and assets \(B_t \in \mathbb{R} \) (with positive values denoting debt, in reverse of the notation used in Arellano (2008)), in order to maximize its utility

\[
U = \sum_{t=0}^{\infty} \beta^t (u(c_t) - \chi_t \delta_t)
\]

(1)

where \(\beta \) is the discount factor of the policy maker, \(u(\cdot) \) is a strictly increasing, strictly concave and twice differentiable felicity function, \(\chi_t \) is an exogenous one-time utility cost of default and \(\delta_t \in \{0, 1\} \) is the decision to default in period \(t \). I shall assume that tax receipts \(y_t \) are exogenous\(^2\), while consumption, the level of debt and the default decisions are endogenous and chosen by the government.

In Arellano (2008) as well as Cole and Kehoe (2000), this is the utility of the representative household, \(y_t \) is total output and \(c_t \) is the consumption of the household, i.e. the fiscal authority is assumed to maximize welfare. The structure assumed here is mathematically the same, and consistent with

\(^2\)It may be interesting to endogenize tax collection!
that interpretation. It is also consistent with my preferred interpretation,
where the utility function represents the preferences of the policy maker. For
example, given the uncertainty of re-election, a policy maker may discount
the future more steeply than would the private sector. Spending may be on
groups that are particularly effective in lobbying the government. Finally, \(y_t \)
should then be viewed as tax receipts, not national income.

A more subtle, though not essential difference is the cost of a default,
modeled here as a one-time utility cost \(\chi_t \), while it is modelled as a fractional
loss in output in Arellano (2008) with Cole and Kehoe (2000). Note, however,
that \(c_t = y_t \) in default, and that at least for log-preferences, \(u(c_t) = \log(c_t) \),
a proportional decline in consumption each period following the default can
equivalently be written as a one-time loss in utility.

In each period, the government enters with some debt level \(B_t \) and the
tax receipts \(y_t \) as well as some other random variables are realized. Traders
on financial markets are assumed to be risk neutral and discount future
repayments of debt at some return \(R \), and price new debt \(B_{t+1} \) according
to some market pricing schedule \(q_{m,t}(B_{t+1}) \). There may be international
assistance (“bailout”) in issuing new debt: we shall analyze this only from
the receiving country at this point. Denote the assisted pricing schedule with
\(q_{a,t}(B_{t+1}) \geq 0 \). Given the pricing schedule, the government then first makes a
decision whether or not to default on its existing debt. If so, it will experience
the one-time exogenously given default utility loss \(\chi_t \), be excluded from debt
markets forever after, and simply consume its output, \(c_t = y_t \) in this as
well as all future periods. If the government does not default, it will choose
consumption and the new debt level according to the budget constraint

\[
c_t + (1 - \theta)B_t = y_t + q_t(B_{t+1})(B_{t+1} - \theta B_t) \tag{2}
\]
where

\[q_t(B_{t+1}) = \max\{q_{m,t}(B_{t+1}), q_{a,t}(B_{t+1})\} \] \hspace{1cm} (3)

where \(0 < \theta \leq 1 \) is a parameter, denoting the fraction of debt that currently needs to be repaid. The parameter \(\theta \) allows to study the effect of altering the maturity structure: the lower \(\theta \), the longer the maturity of government debt.

The remainder of the debt \(\theta B_t \) will be carried forward, with the government issuing the new debt \(B_{t+1} - \theta B_t \). In line with the policy of the European Financial Stability Facility, the assistance is given for the new debt only.

There may be additional restrictions outside the formulation above: I shall return to their discussion in section 4.

2.1 State space representation

I shall restrict attention to the following state-space representations of the equilibrium. At the beginning of a period, the aggregate state

\[s = (B, d, z) \] \hspace{1cm} (4)

describes the endogenous level of debt \(B \), the default status \(d \) and some exogenous variable \(z \in Z \). I assume that \(z \) follows a Markov process and that all decisions can be described in terms of the state \(s \). The probability measure describing the transition for \(z \) to \(z' \) shall be denoted with \(\mu(dz' | z) \).

More specifically, I shall assume that \(z \) is given by

\[z = (y, \chi, \zeta, \psi) \] \hspace{1cm} (5)

I assume that \(y \in [y_L, y_H] \) with \(0 < y_L \leq y_H \) either has a strictly positive and continuous density \(f(y | z_{\text{prev}}) \), given the previous Markov state \(z_{\text{prev}} \) or is nonrandom. I assume likewise that \(\chi \in [\chi_L, \chi_H] \) with \(0 \leq \chi_L \leq \chi_H \) either has a strictly positive and continuous density \(g(\chi | d, z_{\text{prev}}) \), given the previous

\footnote{The next constraint may need to depend on whether \(B_{t+1} - \theta B_t \) is positive or negative}
Markov state z_{prev} and the default state d or is nonrandom. I assume that $\zeta \in [0, 1]$ is uniformly distributed and denotes a “crisis” sunspot and where $\psi \in [0, 1]$ is uniformly distributed and denotes a “bailout” sunspot. I assume that the distributions of the four entries in z is independent of each other, given the previous state. For most parts, I shall assume that z is iid, and that therefore the distributions for y and χ also do not depend on z_{prev}. For notation, I shall use $y(s)$ to denote the entry y in the state s, etc.

If the government does not default ($\delta = 0$), the period-per-period budget constraint is

$$c + (1 - \theta)B(s) = y(s) + q(B'; s)(B' - \theta B(s)) \quad (6)$$

where B' is the new debt level chosen by the government and where $q(B'; s)$ is the pricing function for the new debt B'.

If the government defaults ($\delta = 1$), the budget constraint is

$$c = y(s) \quad (7)$$

I assume that the government will be excluded from debt markets forever after a default. It is not hard to generalize it to the case, where a return to debt markets is allowed after some (possibly random) time. Technically, this means that $d = 0$ in the state s will be turned to $d = 1$ in the state s' following a default, and that $d = 1$ is always followed by $d = 1$, i.e.

$$d' = \max\{d, \delta\} \quad (8)$$

There is no other role for d. The default decision of the government is endogenous and (assumed to be) a function of the state s, $\delta = \delta(s)$.

I can now provide a recursive formulation of the decision problem for the government. The value function in the default state and after the initial default utility loss is given by

$$v_D(z) = u(y(z)) + \beta E[v_D(z') \mid z] \quad (9)$$
Given the debt pricing schedule $q(B; s)$, the value from not defaulting is

$$v_{ND}(s) = \max_{c, B'} \{ u(c) + \beta E[v(s') | z] |$$

$$c + (1 - \theta)B(s) = y(s) + q(B'; s)(B' - \theta B(s))$$

$$s' = (B', d(s), z') \}$$

The overall value function is given by

$$v(s) = \max_{\delta \in \{0, 1\}} (1 - \delta)v_{ND}(s) + \delta(v_D(z(s)) - \chi(s)) \quad (10)$$

Given parameters, a law of motion for z as well as the assisted debt pricing function $q_a(B; s) \geq 0$, an **equilibrium** is defined as measurable mappings $q_m(B'; s), q(B'; s)$ in B' and s as well as $c(s), \delta(s)$ and $B'(s)$ in s, such that

1. Given the pricing function $q(B'; s)$, the government maximizes its utility with the choices $c(s), \delta(s)$ and $B'(s)$, subject to the budget constraint (6) and subject to the exclusion from financial markets for all periods, following a default.

2. The market pricing function $q_m(B'; s)$ is consistent with risk-neutral pricing of government debt.

3. The pricing function satisfies

$$q(B'; s) = \max\{q_m(B'; s), q_a(B'; s)\} \quad (11)$$

2.2 Debt pricing

This subsection of the analysis follows closely the analysis in Cole and Kehoe (2000) and Arellano (2008), adapted to the model at hand. Traders on financial markets are assumed to be risk neutral and to discount future debt repayments at some return R. This shall be generalized in section 5. If there has been a default in the past (i.e. if $d = 1$), then traders assume that the
country will also always default in the future\footnote{For that, we also need that \(\chi = 0 \) for all \(s \) with \(d = 1 \), as a slight and entirely technical modification to the iid assumption stated above.}. The market price for debt following a default is therefore identical to zero,

\[
q_m(B'; s) = 0, \text{ if } d(s) = 1
\]

\hspace{1cm} (12)

Given a level of debt \(B \) and no past defaults, let

\[
D(B) = \{ z \mid \delta(s) = 1 \text{ for } s = (B, 0, z) \}
\]

\hspace{1cm} (13)

be the default set, and let

\[
A(B) = \{ z \mid \delta(s) = 0 \text{ for } s = (B, 0, z) \}
\]

\hspace{1cm} (14)

be the set of all \(z \), such that the government will not default and instead, continue to honor its debt obligations: both are (restricted to be) a measurable set, according to our equilibrium definition. The disjoint union of \(D(B) \) and \(A(B) \) is the entire set \(Z \). Define the market price for debt, in case of no current default, i.e.

\[
\bar{q}_m(B'; s) = \frac{1}{R} \int_{z' \in A(B)} (1 - \theta + \theta q_m(B(s' = (B', 0, z'))) \mu(dz' \mid z)
\]

\hspace{1cm} (15)

Here and below, I use the notation \(B(s' = (B', 0, z')) \) to denote the new debt level \(B(s') \), given the new state \(s' = (B', 0, z') \). A shorter, more accurate, but perhaps more confusing notation would simply be \(B((B', 0, z')) \). Due to risk neutral discounting, this is the market price of debt, if there is no default “today”. Define the probability of a continuation \textbf{next period} per

\[
P(B'; s) = \text{Prob}(z' \in A(B') \mid s) = E \left[1_{\delta(s')=0} \mid s \right]
\]

\hspace{1cm} (16)

If \(\theta = 0 \), i.e., if all debt has the maturity of one period only, then

\[
\bar{q}_m(B'; s) = \frac{1}{R} P(B'; s)
\]

\hspace{1cm} (17)
As there may be international assistance in issuing new debt, define
\[\bar{q}(B'; s) = \max\{\bar{q}_m(B'; s), q_a(B'; s)\} \quad (18) \]

We need to check, whether there could be a default “today”. I shall impose the following assumption.

Assumption A. 1 Given a state \(s \), either \(q_m(B'; s) = \bar{q}_m(B'; s) \) for all \(B' \) or \(q_m(B'; s) = 0 \) for all \(B' \).

This assumption rules out equilibria, where, say, the market expects a current default, if the government tries to finance some future debt level \(B' \), but not for others\(^5\).

I now turn to analyzing the possibility for a self-fulfilling expectation of a default. Define the value of not defaulting, if the market prices are consistent with current debt repayment,
\[
\bar{v}_{ND}(s) = \max_{c,B'}\{u(c) + \beta E[v(s') | z] | c + (1 - \theta)B(s) = y(s) + \bar{q}(B'; s)(B' - \theta B(s)) \}
\]
where it should be noted that the continuation value function is as before, i.e. given by (10). Define the value of not defaulting, if the market prices are consistent with a current default, or, more generally, if the assisted market price exceeds the market price at all chosen debt levels :
\[
\bar{\nu}_{ND}(s) = \max_{c,B'}\{u(c) + \beta E[v(s') | z] | c + (1 - \theta)B(s) = y(s) + q_a(B'; s)(B' - \theta B(s)) \}
\]

\(^{5}\)Cole and Kehoe (2000) finesse this issue with more within-period detail, having the government first sell new debt at some pricing schedule, before taking the default decision.
With that, define two bounds for the current debt levels B, see also figure 2. Above the upper bound $B \geq \bar{B}(z)$, the government finds it optimal to default today, even if the market was willing to finance future debt in the absence of a default now, i.e. even if $q(B'; s) = \bar{q}(B'; s)$. Above the lower bound $B \geq \underline{B}(z)$, the government finds it optimal to default, if the market thinks it will do so and therefore is unwilling to finance further debt, $q_m(B'; s) = 0$. I.e., let

$$\bar{B}(z) = \inf\{B \mid \bar{v}_{ND}(s = (B, 1, z)) \leq v_D(z(s)) - \chi(s = (B, 1, z))\} \quad (19)$$

as well as

$$\underline{B}(z) = \inf\{B \mid v_{ND}(s = (B, 0, z)) \leq v_D(z(s)) - \chi(s = (B, 0, z))\} \quad (20)$$

Whether or not there will be a default at some debt level B between these bounds will be governed by the sunspot random variable ζ. As in Cole-Kehoe (2000), I shall assume that the probability of a default in this range is some exogenously given probability π.

Assumption A. 2 For some parameter $\pi \in [0, 1]$, and all s with $\underline{B}(z) \leq B(s) \leq \bar{B}(z)$, we have $q_m(B'; s) = \bar{q}_m(B'; s)$, if $\zeta(s) \geq \pi$ and $q_m(B'; s) = 0$, if $\zeta < \pi$.

Note that the assumption relates endogenous objects to each other.

The equilibrium will therefore look as follows (up to breaking indifference at the boundary points):

1. If $B > \bar{B}(z)$, the government will default now and not be able to sell any debt. The market price for new debt will be zero.

2. If $\underline{B}(z) \leq B \leq \bar{B}(z)$, the government will

 (a) default with probability π (more precisely, for $\zeta(z) < \pi$), and the market price for new debt will be zero,
(b) continue with probability $1 - \pi$ (more precisely, for $\zeta(z) \geq \pi$), and the market price for new debt will be $\bar{q}_m(B'; s)$.

3. If $B < B(z)$, the government will not default, and the market price for debt will be given by $\bar{q}_m(B'; s)$.

Following Cole and Kehoe (2000), I shall use the term “crisis zone” for the maximal range for new debt, for which there might be a “sunspot” default next period, i.e. for

$$B' \in \mathcal{B} = \left[\min \mathcal{B}(z), \max \mathcal{B}(z) \right]$$

Note that safe debt will be priced at q^* satisfying

$$q^* = \frac{1}{R}(1 - \theta + \theta q^*)$$

and is therefore given by

$$q^* = \frac{1 - \theta}{R - \theta}$$

Conversely, given some price q, one can infer the implicit equivalent safe rate

$$R(q) = \theta + \frac{1 - \theta}{q}$$

3 No bailouts

In this section, I exclude assisted debt issuance, i.e. I assume that $q_a(B'; s) \equiv 0$. I therefore furthermore assume, that the bailout sunspot $\psi(s)$ is “irrelevant”, i.e. all functions are independent of ψ: it may not be necessary to assume so, but it seems unnecessary to consider it. I finally shall assume that z is iid.

The following results are essentially in Arellano (2008) and states that default incentives increase with higher debt.
Proposition 1 Suppose z is iid and that all functions are independent of ψ. If default is optimal for $s^{(1)} = (B^{(1)}, 0, z)$, then default is optimal for $s^{(2)} = (B^{(2)}, 0, z)$, whenever $B^{(2)} > B^{(1)}$.

This is proposition 1 in Arellano (2008).

The next proposition states that lower tax receipts y increases default incentives.

Proposition 2 Suppose z is iid and that all functions are independent of ψ. Default incentives are stronger, the lower are tax receipts. I.e., for all $y^{(1)} \leq y^{(2)}$, if $z^{(2)} = (y^{(2)}, \chi, \zeta, \psi) \in D(B)$, then so is $z^{(1)} = (y^{(1)}, \chi, \zeta, \psi) \in D(B)$.

This is the non-trivial insight and proposition 3 in Arellano (2008) and follows similarly from the concavity of $u(\cdot)$. A graphical representation is in figure 1. In that figure, a pricing function $q(B'; s)$ is taken as given. We are typically considering two pricing functions in particular. Due to the possibility of a sunspot, the pricing function may be $q = \bar{q}_m(B'; s)$ or $q \equiv 0$. The latter results in a larger default set in the latter case. A graphical representation is in figure 2.

By comparison to proposition 2, the next proposition is certainly more trivial and obvious, and states that less “shame” χ of defaulting results in higher incentives to default.

Proposition 3 Suppose z is iid and that all functions are independent of ψ. Default incentives are stronger, the lower is the utility penalty from defaulting. I.e., for all $\chi^{(1)} \leq \chi^{(2)}$, if $z^{(2)} = (y, \chi^{(2)}, \zeta, \psi) \in D(B)$, then so is $z^{(1)} = (y, \chi^{(1)}, \zeta, \psi) \in D(B)$.

With these results, we can derive the dependence of the pricing function on the debt level.

Proposition 4 Suppose that $q_a(B'; s) \equiv 0$, i.e. no bailouts. Then $q(B'; s)$ is decreasing in the debt level B'. If y and/or χ is random with a strictly positive
Figure 1: Relationship between debt, income and the default decision, at a given pricing function $q(B'; s)$

Figure 2: Relationship between debt, income and the default decision, for the two pricing functions $q = \bar{q}_m(B'; s)$ and $q \equiv 0$
and continuous density, then \(q(B';s) \) is continuous in \(B' \) with a nonpositive
derivative in \(B' \), except for finitely many points.

Proof: To be completed. Note, that changes in \(B' \) “smoothly” move into
the default areas, when \(y \) and/or \(\chi \) is random with a strictly positive and
continuous density. •

A graphical representation of the pricing function \(q = \bar{q}_m(B';s) \) is in fig-
ure 3 for the case of \(\theta = 0 \), i.e. one-period bonds. If the next period debt
level is below the lowest level, at which a default could possibly be expected,
\(B' \leq \min B(z) \), then the debt is safe and will be discounted at \(R \). As \(B' \)
increases beyond this level, there will be some states of nature in the future,
for which a default may occur: these defaults become gradually more likely
with increases in \(B' \), as one can infer from figure 2. Once the debt level is
so high, that a default must surely occur tomorrow, then the current price
level must be zero as well. The pricing function depends on the sunspot
default probability tomorrow in a subtle way, as figure 4 shows. With a zero
probability of a “sunspot” default, the debt \(B' \) needs to exceed \(\min \bar{B}(z) \) in
order for the price \(\bar{q}_m(B';s) \) to decline. Indeed, \(\bar{B}(z) \) itself depends on \(\pi \)
and should intuitively rise, as \(\pi \) falls (since \(q \) is shifting upwards): this is
indicated by the shift also of \(\max \bar{B}(z) \) in that figure.

It is useful to analyze the first-order condition of the government, when
considering its choice for the future debt level \(B' \), assuming that the debt
pricing rule is “sufficiently nice”. Define the level of consumption, resulting
from a particular debt choice \(B' \),

\[
c(B';s) = y(s) + q(B';s)(B' - \theta B(s)) - (1 - \theta)B(s)
\]

(23)

At the optimal choice, \(B' = B'(s) \) and \(c(B';s) = c(s) \). From there, consider
marginally increasing the amount of debt \(B' \). This yields a current utility
Figure 3: The market price \(q(B') = \bar{q}_m(B'; s) \) as a function of future debt \(B' \).

Figure 4: The market price \(q(B') = \bar{q}_m(B'; s) \) for nonzero “sunspot” default probability \(\pi \) as well as for \(\pi = 0 \).
gain

\[
\left(\frac{\partial U}{\partial B'} \right)_{(I)} = u'(c(s)) \left(q(B'; s) + q_1(B'; s)B' \right)
\]

Per the envelope theorem for \(v_{ND} \), i.e. conditional on a state \(s' \) of no default, the utility loss tomorrow is given by

\[
\frac{\partial v_{ND}(s')}{\partial B'} = \beta u'(c(s'))(\theta - 1 - \theta q(B''(s'); s'))
\]

where I have used the hopefully intuitive notation \(B''(s') \) to denote the debt choice next period, given next periods state \(s' \), instead the of the formally correct but possibly confusing notation \(B'(s') \). Integrating the losses given by (25) yields

\[
\left(\frac{\partial U}{\partial B'} \right)_{(II)} = \beta \pi \int_{\{z: B' \leq B(z)\}} u'(c(s' = (B', 0, y, \chi, 0, 0)))(1 - \theta + \theta q(B''(s'); s')) \mu(dz)
\]

\[
+ \beta (1 - \pi) \int_{\{z: B' \leq B(z)\}} u'(c(s' = (B', 0, y, \chi, 1, 0)))(1 - \theta + \theta q(B''(s'); s')) \mu(dz)
\]

\[
= \beta E \left[u'(c(s'))(1 - \theta + \theta q(B''(s'); s'))1_{\delta(s')=0} \right]
\]

where I have set \(\zeta = 0 \) and \(\zeta = 1 \) for the two crisis sunspot situations, and arbitrarily fixed \(\psi = 0 \).

However, the set of default states changes. To keep the analysis tractable, suppose that \(\chi \) is not random but constant, while the distribution for \(y \) has a nontrivial, strictly positive and bounded density \(f(y) = F'(y) \) on \([y_L, y_H]\).

With the help of proposition 2, the condition \(B \leq B(z) \) can equivalently written as \(y \geq y(B) \), while the condition \(B \leq \bar{B}(z) \) can equivalently written as \(y \geq \bar{y}(B) \) for some bounds \(\bar{y}(B) \leq y(B) \). Additionally, there is then the net loss in utility due to increasing the risk of default (or, technically, the differentiation with respect to the boundary of the integral),

\[
\left(\frac{\partial U}{\partial B'} \right)_{(III)} = \beta \pi \left(v_{ND}(B', 0, y(B'), \chi, 0, 0) + \chi - v_D(y(B'), \chi, 0, 0) \right) f(y(B')) \frac{dy(B')}{dB'}
\]

\[
+ \beta (1 - \pi) \left(v_{ND}(B', 0, \bar{y}(B'), \chi, 1, 0) + \chi - v_D(\bar{y}(B'), \chi, 0, 0) \right) f(\bar{y}(B')) \frac{d\bar{y}(B')}{dB'}
\]
Note now, though, that the boundaries are defined by the condition that the expression in brackets equals zero, unless we are at the boundary of the interval \([y_L, y_H]\) and therefore the derivative of \(y(B')\) or of \(\bar{y}(B')\) with respect to \(B'\) is zero.

The argument regarding this third part generalizes, in case \(\chi\) is random too. We note this result as follows.

Proposition 5 If the condition for optimality can be written as a first-order condition, it is

\[
\left(\frac{\partial U}{\partial B'} \right)_{(I)} = \left(\frac{\partial U}{\partial B'} \right)_{(II)}
\]

where the two pieces are given by (24) and (26). Put differently,

\[
q(B'; s) + q_1(B'; s)B' = \beta E \left[\frac{u'(c(s'))}{u'(c(s))} (1 - \theta + \theta q(B''(s'); s'))1_{\delta(s')=0} \right] \tag{28}
\]

If \(\theta = 0\) (only short-term debt), then

\[
q(B'; s) + q_1(B'; s)B' = \beta E \left[\frac{u'(c(s'))}{u'(c(s))} 1_{\delta(s')=0} \right] \tag{29}
\]

or

\[
1 - h(B'; s)B' = \beta RE \left[\frac{u'(c(s'))}{u'(c(s))} \mid \delta(s') = 0 \right] \tag{30}
\]

where the hazard rate \(h(B'; s)\) is given by

\[
h(B'; s) = -\frac{\partial E [\delta(s') = 0] / \partial B'}{E [\delta(s') = 0]} \tag{31}
\]

Proof: For equation (29), note that \(q(B'; s) = E [\delta(s') = 0] / R\). •

There is an important tension here. Consider \(\theta = 0\) and the first order condition (29). When increasing the debt level, the usual “consumption-versus-savings” first-order effect ought to be an increase in current consumption and a decrease in future consumption, leading to an decrease in current
marginal utility and an increase in future marginal utility, resulting in some optimal level. This is offset by the decrease in resources gained per additional unit of debt on the left-hand side, due to the decrease in q_1 and the decrease in the no-default region on the right-hand side. It is not a priori clear, that there is a unique solution. Put differently, it is not a priori clear and perhaps even unlikely, that the budget set (6) is convex in the choices (c, B').

This issue and the first-order condition (29) are examined in figure 5: I shall focus entirely on the case $\theta = 0$, though this discussion can probably be generalized. The left column shows the “benign” case. In the upper left panel, the market price for new debt $q(B')$ declines at a reasonably even pace, so that the left hand side in equation (29) is monotonously decreasing, and even becomes negative, until debt reaches $\max_z \bar{B}(z)$. That left hand side is then compared to the rhs of (29) in the lower left panel. For the figure, it has been assumed that the rhs is rising in B': as discussed, even that may not be the case. The two curves intersect at a unique point. The right column shows one possible scenario, where multiple solutions to the first-order condition may emerge. Start from the upper right panel: there, $q(B')$ becomes rather flat for a portion of the new debt levels, implying a jump upwards in the left-hand side of (29). As a result, the right-hand side of equation (29) may now intersect the left-hand side of (29) multiple times, as shown in the bottom right panel.

Nonetheless, for the purpose of some discussions, it may be illuminating to proceed with examining the first-order condition, and assuming that it provides the unique solution, while keeping the caveat in mind, that this may not be right. I shall state this as an explicit assumption, in case it is necessary to make an explicit reference to it.

Assumption A. 3 The first-order conditions given in proposition 5 characterize the solution, and the solution is unique.
The market price $q(B')$ vs the lhs of (29):

![Graph showing the market price $q(B')$ vs the lhs of (29).]

The two sides of (29):

![Graph showing the two sides of (29).]

Figure 5: *Examining the first order condition (29)*

20
Figure 6: The first-order condition (29) versus variations in the state s: implications for the new debt level B'.

With that assumption, some further comparative statics is possible, as shown in figure 6. For lower y or for higher B, one obtains a lower level of current consumption, keeping future debt B' the same. This results in higher marginal utility $u'(c)$ or a lower rhs of the first-order condition (29).

Consider now the case, where χ is constant and where the fluctuations in income are very small. In that case, the price is nearly flat at $q = (1 - \pi)/R$ in the crisis zone, $\min B(z) \leq B' \max \bar{B}(z)$. Figure 7 shows the resulting version of (29), corresponding essentially to the situation described in Cole and Kehoe (2000). The question is now, how large B' is, compared to the debt level B leading into this scenario. Consider the case where $\beta R = 1$. If income is literally constant, then consumption should be constant and the debt level should likewise remain constant, except that the country can also

6This analysis is preliminary and rather speculative. Hopefully, I will succeed with a clean-up in a future version of this paper.
Figure 7: The first-order condition (29) when income fluctuations are small.

avoid the cost of default altogether\(^7\) by “saving itself” out of the crisis zone, as shown in Cole and Kehoe (2000). The version of (29) for an initial debt level \(B = 0\) is shown in figure 8: at constant income and \(\beta R = 1\), the country will simply maintain that debt level rather than increase it.

Indeed, with a modest degree of income variation and for \(\beta R = 1\), the country will choose to distance itself over time from the default zone as far as possible, saving for precautionary motives. The ensuing dynamics is shown in figure 9. If \(\beta R < 1\), but close to 1, then the asset accumulation will not “run away”, but still, the country will choose to accumulate large amounts of assets, as shown in figure 10. As a result, a sovereign debt crisis is highly unlikely. Here, it is therefore important to appeal to the political economy literature on sovereign debt accumulation, as in the literature cited in the introduction. If the government discounts the future sufficiently highly, i.e.

\(^7\)This appears to clash with the first-order condition derived above. The issue will be cleared up in a future version of this paper.
if \(\beta R \) is considerably smaller than unity, then the country will possibly perch itself at a precarious point with an amount of debt in the crisis zone, as shown in figure 11. Indeed, reintroducing the income fluctuations in this picture results in a stationary distribution for the debt level, under suitable assumptions, as shown in figure 12.

4 Bailouts

Let me now consider the possibility for a bailout. I shall focus on a few benchmark cases and explore their implications. First, suppose that, for a single period, debt can be sold at some fixed “assisted” price \(0 < q_a < 1/R \) to some outside facility, provided the total amount \(B' \) of debt does not exceed some upper limit \(\bar{B}_a \). This is a bailout and a stylized version of the one-time rescue for Greece or a one-time intervention by the European Financial
Figure 9: The debt dynamics for small income fluctuations and $\beta R = 1$.

Figure 10: The debt dynamics for small income fluctuations and βR below, but near 1.
Figure 11: The debt dynamics for small income fluctuations and βR far below 1.

Figure 12: The stationary debt dynamics for small income fluctuations and βR far below 1.
Stability Facility. The resulting situation is shown in figure 13. The green line denotes the market price for existing debt sold to private lenders, while the blue line denotes the line, at which debt can be sold to the outside facility. The new debt level $B'_a(s)$ now exceeds the old debt level. Essentially, given the bailout, there is no longer quite the same pressure for the government of the country to cut back on government spending, due to the impending financial crisis. Indeed, we have seen how the attempts of government cut backs in Greece and Portugal have run into fierce local resistance: a luxury, that certainly would not have been there, if these countries needed to keep borrowing on private markets only and wished to avoid a default. As this is a one-time bailout, the resulting debt dynamics is given by figure 11, starting towards the right end, and indicated with the red arrow there (indeed, that arrow only applies in this situation: without the bailout, there would have been an assured default at that debt level outside the crisis zone).

Figure 13: *The choice of the debt level in case of a one-time assistance or bailout.*
Figure 14: The choice of the debt level in case of a permanent assistance or bailout.

It may be more interesting to consider a permanent version of this facility: all future borrowing by the country at hand can be done at some fixed price $0 < q_a < 1/R$, provided the total amount B' of debt does not exceed some upper limit \bar{B}_a. In that case, the pricing is given by figure 14. The existence of the borrowing guarantee now removes the doubt of private lenders that the country will be able to borrow tomorrow. As a result, the country debt becomes safe and will be discounted at the usual safe rate R. The mere promise of the permanent facility results in a markedly reduced market interest on the country debt, provided the promised facility is fully credible.

This may appear to be a wonderful solution. This is so only at first blush, however. Note that the borrowing increases from $B'(s)$ to $B'_a(s)$. Indeed, the country will once again find its perch in the crisis zone of probabilistic default:
Figure 15: *The stationary debt dynamics for small income fluctuations and a permanent bailout facility.*

this time, however, triggered by the debt limit imposed by the facility\(^8\). The country will borrow privately at the safe return \(R\), until it gets near the imposed debt limit. At that point, credibility on private credit markets collapses as a default is now viewed as likely, the country will borrow one last time, but this time from the facility at the reduced price, and will default in the next period. The proof is by contradiction: if it would not default in the next period (or if such a default would be very unlikely), then it would borrow privately, rather than at the “penalty rate” from the facility. The ensuing debt dynamics is shown in figure 15.

Both scenarios are in conflict with the observation, however, that yields on, say, Greece, Portuguese and Irish debt are high and continue to be high, i.e. that there continue to be default fears by private markets. While it is

\(^8\)Without a debt limit, the country will choose to run a Ponzi scheme, borrowing forever more without ever repaying.
conceivable, that we are simply in that “terminal” period described in the previous scenario, an alternative view here is that the bailout is probabilistic. This can be modelled in analogy to the default sunspot above. I.e., assume some bailout probability $0 < \omega < 1$. If the “bailout sunspot” ψ is below ω, $\psi < \omega$, then the country can borrow at the price $0 < q_a < 1/R$ from the outside facility, provided the total amount B' of debt does not exceed some upper limit \bar{B}_a. If the “bailout sunspot” ψ exceeds ω, $\psi \geq \omega$, then the country must rely on private markets alone.

This will have the effect shown in figure 16. The level of debt at which a country will now prefer a default in those periods when no borrowing from the facility is possible, has increased compared to the “no bailout ever” scenario, as the country can hope for the option of borrowing from that facility in the future. Therefore, the crisis zone shifts to the right. The debt dynamics is shown in figure 17. Essentially, this is now a shifted version of the debt dynamics without that facility: rather than repaying the debt, the country shifts to higher debt levels, and the probability of a default is essentially the same as it was before. This takes a bit of time, of course. The facility therefore provides a temporary, but not a permanent resolution of the fiscal crisis. The debt is once again traded at a premium, as before, except that the probabilistic bailout means that these higher premium will be afforded at a higher debt level, than without that facility, while avoiding the default.

In essence, these scenarios show that the bailout facility only postpones the day of reckoning. It provides temporary relieve to the country in its desire to maintain a high level of government consumption, but leaves the default situation in a very similar and precarious situation as before, once the initial relief is “used up”.

29
Figure 16: Comparing the no-bailout private market pricing function $q(B')$ with the pricing function $\tilde{q}(B')$ in case of probabilistic bailouts.

Figure 17: The stationary debt dynamics for small income fluctuations and probabilistic bailout facility.

5 Contagion and amplification

The framework above can be extended easily in order to investigate issues of contagion and amplification. Consider now that there are \(j = 1, \ldots, J \) fiscal authorities, financing their expenditures with debt and taxes. The state is now given by

\[
s = (s_1, \ldots, s_J)
\]

where

\[
s_j = (B_j, d_j, z_j)
\]

and where

\[
z_j = (y_j, \chi_j, \zeta_j, \psi_j)
\]

While the fate of each country could evolve independently, there now is scope for considerable spillover. For example, if all \(\zeta_j \) are the same \(\zeta_1 = \ldots = \zeta_J = \zeta \), then the “sunspot” default will hit all countries at the same time. It is more interesting, though, to consider an extension of the list of state variables to, say,

\[
z_j = (y_j, \chi_j, \zeta_j, \psi_j, \pi_j, \omega_j)
\]

where \(\pi_j \) and \(\omega_j \) are the sunspot default probabilities as well as the bailout probabilities for next period: a default in period \(t + 1 \) occurs, when \(\zeta_{j,t+1} \leq \pi_{j,t} \). The variable \(\pi_{j,t} \) is therefore relevant for pricing debt in period \(t \). Assume now, for example, that \(\pi_{1,t} = \pi_{2,t} = \ldots = \pi_{J,t} = \pi_t \), i.e. that all these probabilities evolve together. An increase in \(\pi_t \) will then result in a current decrease of debt prices in all \(J \) countries simultaneously, and possibly trigger defaults occurring in several countries simultaneously. A similar comment applies to the bailout probability \(\psi_j \).

As for an amplification mechanism, it would be interesting to impose that sovereign debt is held by financial intermediaries and only by them, with limited cash at hand. Thus, as in, say, Allen and Gale (2007), the
discount applied even to safe bonds is given by demand and supply for these bonds within the banking sector, and potentially restricted by the “cash-in-the-market” of these institutions. One can then have a situation, where the default in one country triggers the default of some financial institutions, which in turn have to sell their assets, depressing prices for all bonds and thus increasing the default probabilities for other financial institutions as well as for other countries. The analysis in, say, Uhlig (2010) can then be used to model and understand the dynamics of a systemic bank run and a run on country debt, with ensuing defaults.

It should immediately be clear, that such cash-in-the-market type defaults can be mitigated or entirely avoided, if the debt is held by private investors broadly, rather than just banks, and thereby priced according to usual risk discounting. The avoidance may not be total, if the reason for financial institutions holding EMU sovereign debt in the first place lies in an implicit subsidy they receive from using these assets for transactions with the common central bank, i.e. in normal times, these assets trade at a liquidity premium. Indirectly, therefore, the sovereign borrowers receive a subsidy, due to the liquidity role that their debt provides. Once that disappears, this subsidy disappears, sovereign debt is traded at usual market discounts, and that could potentially trigger a crisis. It is hard to imagine that this mechanism is particularly large, however.

6 A numerical example

To be completed.
7 Conclusions

I have analyzed the dynamics of sovereign debt defaults, drawing on insights from three literatures, particularly Arellano (2008), Cole-Kehoe (2000) and Beetsma-Uhlig (1999). More precisely, I have analyzed the dynamics of sovereign debt, when politicians discount the future considerably more than private markets and when there are possibilities for both a “sunspot-” driven default as well as a default driven by worsening of economic conditions or weakening of the resolve to continue with repaying the country debt.

I have shown how this can lead to a scenario, where the country perches itself in a precarious position, with the possibility of defaults imminent.

I have discussed various bailout scenarios, financed by some outside facility. In essence, these scenarios show that the bailout facility only postpones the day of reckoning. It provides temporary relieve to the country in its desire to maintain a high level of government consumption, but leaves the default situation in a very similar and precarious situation as before, once the initial relief is “used up”.

I have discussed, how a multi-country version of this model with common shocks to the sunspot default probability or enriched with a financial intermediary sector can be used to understand contagion as well as “cash-in-the-market” amplification and spillovers of one default on other countries. It should immediately be clear, that such cash-in-the-market type defaults can be mitigated or entirely avoided, if the debt is held by private investors broadly, rather than just banks, and thereby priced according to usual risk discounting.
References

