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Abstract

This paper analyzes equilibria and efficiency in a class of economies (large games)

that feature incomplete information, strategic interaction, and endogenous informa-

tion acquisition, with beauty contests as a leading example. We adopt the rational

inattention approach to endogenous information acquisition but generalize to a large

class of information cost structures. Our framework allows agents to learn not only

about exogenous states but also about endogenous aggregate actions. We study how

the properties of the agents’ cost functions are related to the properties of equilib-

rium and efficient strategies in this class of games. First, we derive conditions under

which equilibrium strategies may exhibit non-fundamental volatility; we show how

this may be interpreted as a noisy public signal that arises endogenously within a ra-

tional inattention framework. Second, we derive a separate set of conditions under

which equilibrium information acquisition is efficient. We find that inefficiency in in-

formation acquisition occurs when cost functions are such that agents endogenously

choose to learn directly about the actions of other agents, as opposed to learning only

about exogenous states. Mutual information, the cost function typically used in the

rational inattention literature, precludes both non-fundamental volatility and imposes

efficiency.
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1 Introduction

We study a general class of games in which a large number of rationally inattentive agents

face uncertainty over exogenous states as well as the endogenous actions of other agents.

We allow these rationally inattentive agents to acquire information in an unrestricted way

about both the exogenous state of the world and the endogenous actions of others. Within

this framework we study the relationship between the properties of the agents’ information

acquisition cost functions and the properties of the resulting equilibria.

In particular, we ask two questions. First, what properties of the agents’ information

acquisition costs guarantee that an equilibrium of the game does or does not exhibit non-

fundamental volatility? Second, what properties of the agents’ information acquisition costs

guarantee or preclude the possibility that an equilibrium coincides with the solution to a

social planning problem, i.e. is constrained efficient?

Framework and Methodology. We address these questions in the context of a relatively

general and oft-studied class of games. In this game we allow there to be one or more types

of agents and a continuum of agents within each type. Agents’ payoffs are assumed to

be functions of their own action, a stochastic payoff-relevant state, and the average (or

aggregate) action.

Payoffs depend on the average action: this feature is the strategic interaction in our

games. Moreover, agents’ actions affect the payoffs of other agents only through the mean (or

aggregate) action. This implies that individual agents—each of whom is infinitesimal—need

not take into account how their own action affects the aggregate action when making their

own strategic choices. This assumption is a defining feature of “large games” and it is

analogous to the assumption that agents are “price-takers” in Walrasian markets.

Examples of this class of games have been studied extensively under incomplete informa-

tion with exogenous information, that is, when agents are endowed with an exogenous signal

structure. Examples of this type of large game include abstract beauty contests [Morris and

Shin, 2002], linear-quadratic games of strategic interaction [Angeletos and Pavan, 2007], New

Keynesian nominal price-setting games [Woodford, 2003], and real business cycle economies

with firms making quantity choices, [Angeletos and La’O, 2010, 2013].

We adopt the rational inattention approach to information acquisition and allow agents

to choose signal structures in a relatively unrestricted way. Importantly, we allow agents to

learn not only about exogenous states but also about endogenous actions, as in Denti [2015].
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The ability of rationally-inattentive agents to learn about other agents’ actions in this

class of games is a novel feature of our paper relative to the previous beauty contest liter-

ature.1 Following the original work of Sims [2003], an extensive literature has studied the

implications of rational-inattentive agents. Most of these models can be classified into two

strands: (i) models with a single decision maker, optimally choosing his or her information

structure, but not participating in a game, or (ii) models of multiple agents playing a game,

with all agents are restricted to learn only about exogenous shocks.

The first paper to allow rationally-inattentive agents to learn in an unrestricted way

about other agents’ actions in a game-theoretic setting is Denti [2015]. We build on his

approach but apply it to the class of large games featuring strategic interaction we have just

described. Relative to Denti [2015], the “largeness” feature of our class of games permits a

simpler definition of equilibrium. Because Denti [2015] considers a finite set of players, agents

take into account how their own information choice and actions affect the strategies of other

agents, which in turn affects their own learning, etc. For this reason, he considers the long

run stationary distribution of a dynamic process of strategic information acquisition. Our

definition of equilibrium, which is essentially Nash equilibrium in a static, simultaneous-move

game, can also be thought of as the limit of the dynamic process Denti [2015] introduces.

There are two restrictions we place on the agents’ ability to acquire information. First,

we assume that agents may learn about mean (or aggregate) actions of her own and other

types, but we prevent agents from learning about the action of any other particular agent.

This choice, made for tractability, is again motivated by the “largeness” feature of the game.

Second, we restrict our attention to information costs that are posterior-separable in the

terminology of Caplin et al. [2018], meaning that they can be written as the expected value

of a divergence between the agent’s prior belief and the agent’s posterior. A divergence

is somewhat analogous to a “distance” from one probability distribution to another. By

focusing on the posterior-separable class of information costs, we may characterize properties

of information costs in terms of the properties of their associated divergences.

Within this framework, we demonstrate that there is a close connection between certain

properties of information costs (divergences) and properties of the equilibria. We find that

non-fundamental volatility and constrained efficiency are both connected to the question

1Outside of the beauty contest literature, learning from prices, which can be thought of as a summary
statistic of aggregate actions, is an old idea that goes back at least to e.g. Grossman and Stiglitz [1980]. A
recent paper by Angeletos and Sastry [2019] allows rationally inattentive agents to learn from prices in a
Walrasian context.

2



of whether information costs are invariant or monotone with respect to certain classes of

transformations of agents’ posteriors. That is, we define various classes of transformations

of distributions: these transformations essentially move around the conditional distributions

of certain shocks, while leaving the joint distributions of other shocks intact. We then

define invariance or monotonicity of divergences with respect to these transformations, and

demonstrate that the invariance/monotonicity properties of divergences that we define are

critical in determining whether the equilibria of the game exhibit non-fundamental volatility

and whether the equilibria are constrained efficient.

Before describing our results, we note that the forms of invariance and monotonicity that

we introduce are generalizations of “invariance under compression” (Caplin et al. [2018]) and

the concept of invariance described in the literature on information geometry (e.g. Amari

and Nagaoka [2007]), applied in related economic applications by Hébert [2018] and Hébert

and Woodford [2018a]. The key difference is that all of these papers consider only whether a

divergence or cost function is invariant or monotone with respect to all possible transforma-

tions, whereas here we show how the answer to the two questions posed in this paper relate

to invariance/monotonicity with respect to specific classes of transformations.

Payoff-relevant vs. Non-payoff-relevant volatility. Consider our first question: what

conditions on information costs guarantee that an equilibrium of the game does or does not

exhibit non-payoff-relevant volatility?

We show that if the divergences that define information costs are monotone to trans-

formations of posteriors that rotate the conditional distributions of payoff-irrelevant shocks,

keeping the posterior joint distribution of aggregate actions and payoff-relevant states intact,

then an equilibrium of the game exists which features zero non-payoff-relevant volatility.

The intuition for this result is the following. Agents’ payoffs are functions only of aggre-

gate actions and payoff-relevant shocks (by definition). Thus, agents do not care about

payoff-irrelevant shocks per se, only to the extent that they may affect aggregate actions.

This implies that if an agent can learn about payoff-relevant states, payoff-irrelevant

states, and actions, she would optimally choose the least costly signal structure that helps her

predict aggregate actions and payoff-relevant states. If information costs are monotone with

respect to the class of transformations just described, then the least-costly signal structure

is also the minimally-informative one: it is the signal structure that allows her to track only

aggregate actions and payoff-relevant states but throw away all other conditional information

about other objects. If all agents optimally choose to pay no attention to payoff-irrelevant
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states conditional on payoff-relevant states and aggregate actions, then the equilibrium fixed

point is one in which the aggregate action profile depends solely on payoff-relevant states.

Therefore, the equilibrium exhibits zero non-payoff-relevant volatility.

On the other hand, if information costs are instead generically non-monotone in the

class of transformations just described, this will not be the case. An agent would still find

it optimal to choose the least costly signal structure that allows her to predict aggregate

actions and payoff-relevant states. However, in this case, the least costly signal structure is

one in which the agent does not throw away all information about payoff-irrelevant shocks

conditional on payoff-relevant states and aggregate actions. For example, suppose there is

a payoff-irrelevant state that is correlated with a payoff-relevant state and it is sometimes

cheaper for an agent to look at that “signal” than the payoff-relevant state itself. An agent

with these information costs may choose to track the payoff-irrelevant state, i.e. correlate her

own action with it, even conditional on the aggregate action and payoff-relevant states. In

equilibrium, this behavior implies that the mean action exhibits tracks the payoff-irrelevant

state, generating non-payoff-relevant volatility. We argue that the payoff-irrelevant state in

this context can be interpreted as a noisy public signal.

Constrained Efficiency. Consider now our second question: what conditions on infor-

mation costs guarantee or preclude the existence of constrained efficient equilibria?

We find that constrained efficiency under endogenous information requires both efficiency

of equilibria under exogenous information and efficiency of information acquisition.2 The first

is a statement about payoffs: we derive conditions on payoffs which ensure efficiency under

exogenous information. The second is a statement about information acquisition costs. We

show that if cost functions are invariant to transformations of posteriors that instead rotate

the conditional distributions of aggregate actions, keeping the posterior joint distribution of

payoff-relevant and payoff-irrelevant states intact, then information acquisition is efficient.

Both of these properties are generally necessary for equilibria to be efficient under endogenous

information acquisition.

To understand this result, consider first the game under exogenous information, in which

agents’ strategies are simply mappings from signals to actions. Agents are endowed with

an information structure, i.e. a conditional distribution of signals, conditional on exogenous

2A similar result appears in Colombo et al. [2014], but for different reasons. In that paper, the dispersion of
agents’ actions affects the welfare of other agents, and acquiring more precise information reduces dispersion.
This externality is entirely absent from our model, in which only the mean action affects the welfare of other
agents.
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shocks (both payoff-relevant and payoff-irrelevant). A constrained planner in this game also

cannot choose the information structure but may choose the agents’ strategies in order to

maximize welfare.

In the exogenous information game, we derive a sufficient condition on the payoff structure

such that the agents’ equilibrium strategies coincide with that chosen by the constrained

planner. The condition we derive is a generalization of a condition stated in Angeletos and

Pavan [2007]. Angeletos and Pavan [2007] consider the class of linear-quadratic games with

strategic interactions; they show that efficiency under exogenous information requires both

efficiency under complete information and an extra requirement on quadratic payoffs that

ensure that the “strategic interaction” or degree of coordination faced by agents coincides

with that desired by the planner. With these two conditions, Angeletos and Pavan [2007]

show that the equilibrium use of exogenous information is efficient.

The condition we derive on payoffs applies to a much more general class of payoffs and

possible information structures, and provides a different perspective on the source and in-

terpretation of the externalities. In particular, we argue that inefficiency arises from “dis-

tributed information externalities,” in which one agent knows that another agent is making

a mistake but does not take this into account when choosing her own action.

Having established this, we then assume efficiency under exogenous information and ask

what more is needed to ensure efficiency under endogenous information acquisition. That is,

does efficiency under exogenous information imply efficiency under endogenous information

acquisition when, importantly, agents can learn in an unrestricted way about both aggregate

states and aggregate actions?3

The answer is no. We show that efficiency in this context requires another form of

invariance in the information costs of agents. In particular, we find that if there is efficiency in

the use of information and if cost functions are invariant in endogenous variables (aggregate

actions), then the equilibrium is constrained efficient. We furthermore show that in the

special case of one type of agent, these conditions are also necessary.

A version of the sufficiency result appears in prior work by Angeletos and Sastry [2019],

who study constrained efficiency of equilibria in a Walrasian setting. Angeletos and Sastry

[2019] consider two cases: one in which agents can track only the exogenous state, and one in

which agents can also track the price. They show that the two cases are equivalent if agents’

information costs are invariant in the standard sense (e.g. as in mutual information).

3The inefficiency in information acquisition we identify is distinct from the one in Colombo et al. [2014].
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In contrast, we study large games,4 and argue that it is a particular kind of invariance

that is sufficient and (in a special case) generically necessary for efficiency. This distinction

is relevant for cost functions that have been proposed in the literature. For example, while

mutual information is the only invariant (in the standard sense) divergence within the class of

“Bregman divergences” (Amari and Nagaoka [2007], Caplin et al. [2018]), the Tsallis entropy

cost functions (also in this class) proposed by Caplin et al. [2018] are invariant in the sense

we show is sufficient for efficiency.

This constrained efficiency result has two implications. First, suppose we had allowed

agents to endogenously acquire information, but restricted the set of objects agents can learn

from to be only the exogenous states–both payoff-relevant and payoff-irrelevant. That is,

agents may endogenously learn, but only about exogenous objects. Then, efficiency under

exogenous information automatically implies efficiency under information acquisition in this

context. Although this result is not well-known in this literature, it has been shown in some

specific contexts.5

Second, in our more general framework where agents are allowed to learn also about

endogenous actions, there is an externality whenever the cost function does not satisfy the

invariance condition just described. This inefficiency comes from the following externality:

when agents choose to learn about other agents’ actions, they are effectively correlating their

actions with other agents’ actions but at the same time not internalizing how this affects the

conditional distribution of the aggregate action. If the cost structure is not invariant in the

way described, then the equilibrium conditional distribution of the aggregate action affects

all agents’ information acquisition costs. That is, agents do not take into account how their

actions affect the information acquisition costs of other agents. This is an externality in the

eyes of the planner, who would choose a different signal structure than the one that arises

in equilibrium.

This externality is familiar because it is similar to the informational externality that arises

in any exogenous information framework when agents may observe an exogenous signal about

an endogenous object (such as prices).6 We derive the particular primitives that give rise to

4Focusing on games as opposed to a Walrasian setting sidesteps certain tricky issues. In particular,
with non-fundamental volatility and rationally inattentive agents, one must specify how markets clear; this
choice can affect the positive implications of the model. Moreover, efficiency in the Walrasian setting requires
“complete markets,” including in particular completeness with respect to the realization of agents’ individual
signals. If we interpret agents’ signal realizations as perceptual errors (the standard rational inattention
interpretation), it is not obvious why they should be contractible.

5See e.g. Online Appendix A of Angeletos and La’O [2020]
6See e.g. Angeletos and La’O [2008], Angeletos and Pavan [2009], Amador and Weill [2010], Angeletos
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this behavior in equilibrium, rather than assume that agents receive a costless signal about

endogenous objects.

To summarize, we find that efficiency under exogenous signals and efficiency with en-

dogenous information are equivalent if agents can only acquire information about exogenous

states of nature. However, if agents can acquire information about the actions of other agents,

efficiency requires an additional invariance condition on the form of the agents’ information

acquisition cost structure.

Further Implications. As stated above, the forms of invariance and monotonicity that we

introduce are generalizations of “invariance under compression” [Caplin et al., 2018]. While

the literature has focused on divergences that are invariant or monotone with respect to all

possible transformations, we classify divergences on whether they are invariant or monotone

with respect to specific classes of transformations. The implication of making this distinction

is that we can construct examples of cost functions that will lead to neither efficiency nor

non-fundamental volatility, both efficiency and non-fundamental volatility, efficiency without

non-fundamental volatility, and non-fundamental volatility without efficiency.

For example, the standard cost function in the rational inattention literature, introduced

by Sims [2003], is mutual information, and the associated divergence is the Kullback-Leibler

divergence. The Kullback-Leibler divergence is invariant in the standard sense and thereby

invariant with respect to all classes of transformations we introduce. As a result, within this

class of models, if all agents are assumed to have mutual information as their information

cost, then equilibria will be efficient and exhibit zero non-fundamental volatility.

Thus, a key message of our paper is that relying on the the mutual information cost

function automatically rules out potentially interesting economic behavior. In contrast,

several of the alternatives proposed in the literature (the Tsallis entropy costs (Caplin et al.

[2018]), the neighborhood-based cost functions of Hébert and Woodford [2018b], and the

LLR cost function of Pomatto et al. [2018]) are not invariant with respect to at least one

of the classes of transformations we define, and consequently will result in equilibria with

inefficiency and/or non-fundamental volatility. These alternatives are motivated in part by

experiments (such as Dean and Neligh [2018]) that find that the predictions with the mutual

information cost function are unable to match data from single-agent decision problems.

Our contribution is to demonstrate that mutual information is not only inconsistent with

et al. [2015]
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behavioral evidence, but that using mutual information instead of one of these other proposed

alternatives has extremely strong predictions about efficiency and non-fundamental volatility

in strategic settings.

Related Literature. Denti [2015] primarily employs the standard mutual information

cost function, but allows agents to gather signals about both an exogenous state of nature

and the equilibrium actions of other agents, justifying this approach via a stochastic learning

model. We adapt the approach of Denti [2015] to games with a continuum of players.7

There is an extensive literature on beauty contests that focuses on efficiency and non-

fundamental volatility. This literature almost universally employs a linear-quadratic-Gaussian

framework. Angeletos and Pavan [2007] characterize efficiency and non-fundamental volatil-

ity under dispersed information given exogenous signals. Hellwig and Veldkamp [2009] and

Myatt and Wallace [2011] study beauty contests with endogenous information acquisition,

and (closest to our paper) Colombo et al. [2014] study efficiency with endogenous infor-

mation. Our paper departs in several respects from this literature. First, we emphasize

a general class of games as opposed to linear-quadratic-Gaussian beauty contests, and we

rule out the possibility that the variance of actions within a type affects utilities (a possi-

bility considered by Angeletos and Pavan [2007] and emphasized by Colombo et al. [2014]).

Second, because we are not restricted to Gaussian signals, our paper analyzes information

acquisition in terms cost functions in a rational inattention problem, and provides results

relating the properties of these cost functions to the properties of equilibria. In contrast,

Hellwig and Veldkamp [2009], Myatt and Wallace [2011], and Colombo et al. [2014] study en-

dogenous information by allowing agents to choose the precision of Gaussian signals. Third,

our approach of adopting the “learning about actions of others” approach of Denti [2015]

has no direct analog in this literature that we are aware of; all of the papers mentioned allow

agents to acquire information only about exogenous fundamentals.

Allowing agents to learn about the actions of others has many precedents outside of

beauty contests and global games. For example, in the classic moral hazard setting of Holm-

strom et al. [1979], the principal can receive a signal whose distribution depends on the action

of the agent, “monitoring” the agent’s actions. What is novel about our approach (following

Denti [2015]) is that we think of agents as monitoring other agents in a simultaneous-move

7Other related papers include Denti [2017], who considers network effects and externalities related to
information acquisition, and Rigos et al. [2018], who extends the analysis of Denti [2015] under mutual
information costs to the case of large coordination games.
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game in which agents are ex-ante identical (or can be grouped into a finite number of types).

At first, this might seem strange– how can one agent monitor the action of another agent

when they must move simultaneously? Note, however, that we could ask the same question

of Walrasian equilibrium: how can the agents choose consumption given prices when their

consumption determines prices? The answer is both cases is that the static, simultaneous-

move game is a stand in for a more dynamic process, in our case the stochastic learning

game of Denti [2015].

Layout. This paper is organized as follows. We begin in Section 2 by defining the general

class of games we study, and provide as a leading example a simple version of the beauty

contest model. In Section 3 we define equilibria under exogenous information and equilib-

ria with endogenous information acquisition and prove existence of both. In Section 4 we

characterize the properties of cost functions that determine whether equilibria feature non-

fundamental volatility. In Section 5 we define and characterize efficiency under exogenous

information, and then describe the properties of cost functions that, combined with efficiency

under exogenous information, lead to efficiency with endogenous information acquisition. We

conclude in Section 6.

2 The Environment

2.1 Primitives

There are I fundamental “types” of agents, indexed by i ∈ {0, . . . , I − 1}. Types deter-

mine agents’ payoffs and information acquisition technologies. Within each type, there is a

continuum of agents, indexed by j ∈ [i, i+ 1).

Agent j of type i chooses her action, aj ∈ Ai ⊆ RL. For each type i ∈ I, the aggregate

action is the average of the actions chosen by agents of that type,

āi =

∫ i+1

i

ajdj.

Let ā ∈ Ā ⊆ RL×I be the vector of aggregate actions for each type.

There is a finite set of fundamental states, s ∈ S. These states, along with aggregate

actions ā, determine the agent’s payoffs. Agents of type i have a utility function ui : Ai ×
Ā × S → R; that is, an agent j of type i who takes action aj ∈ Ai in state s ∈ S when
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the aggregate action is ā ∈ Ā receives payoff ui (aj, ā, s). We impose the following regularity

assumption on the utility functions and action space.

Assumption 1. For all i ∈ I, Ai is non-empty, convex, and compact, and ui (aj, ā, s) is

continuously differentiable on Ai × Ā for all s ∈ S.

We impose Assumption 1; it will be sufficient, but not necessary, for our results.8 In

particular, our results could readily be extended to games with finitely many actions for

each type of agent.

The final primitives of the environment are the agents’ information acquisition technolo-

gies, which we discuss next. Prior to that, we show how this environment nests the typical

beauty contest environment.

Example: Beauty Contest Games. Consider the canonical “beauty contest” game.

There is only one type of agent, I = 1, but within this type there is a continuum of agents

indexed by j ∈ [0, 1] . Each agent chooses a one-dimensional action aj ∈ A where A is a

non-empty, convex, and compact subset of R. Payoffs are given by

u
(
aj, ā, s

)
= − (1− χ)

(
aj − β (s)

)2 − χ
(
aj − ā

)2
(1)

where ā =
∫ 1

0
ajdj denotes the mean action, β : S → R is an arbitrary function of the

fundamental state, and χ ∈ R is a scalar which we assume satisfies χ < 1. This game is

nested in our environment and the payoffs in (1) satisfy the conditions in Assumption 1.

The first component of payoffs is a quadratic loss in the distance between the agent’s

action and the function β (s) of the aggregate state; the second component is a quadratic

loss in the distance between the agent’s action and the mean action. The scalar χ governs

the extent of strategic interaction in this game: when χ > 0 actions are said to be “strategic

complements,” when χ < 0 actions are said to be “strategic substitutes.” Assumption 1

ensures existence of pure-strategy Nash equilibria of this game under complete information,

and χ < 1 to ensures uniqueness. The function β is also the complete information equilibrium

strategy. That is, under complete information, the Nash equilibrium strategy profile is given

by aj (s) = ā (s) = β (s) ,∀j.
The focus of our paper is games with incomplete information and endogenous acquisition

of information. We next describe the informational environment.
8 Note that Assumption 1 guarantees the existence of mixed strategy Nash equilibria under complete

information in games with continuous actions spaces. See, e.g., Fudenberg and Tirole [1991] theorem 1.2
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2.2 Shocks and Information Acquisition

Shocks and Priors. In addition to the fundamental payoff-relevant states, s ∈ S, we

allow for two types of exogenous non-fundamental states, r ∈ R and z ∈ Z, each of which

are drawn from finite sets. We will interpret these states as being related to a noisy public

signal and a sunspot, respectively. We will elaborate on the distinction between these two

types of shocks and justify this interpretation in what follows.

Agents are endowed with a common prior µ0 (s, r, z) over the exogenous states. Let

U0 ≡ ∆ (S ×R× Z) denote the space of probability measures over the exogenous states, with

µ0 ∈ U0. Note that the non-fundamental shocks r, z can be independent of the fundamental

state, in which case they can be interpreted as pure noise, or correlated, in which case they

case they can be interpreted as noisy signals about the fundamental state. Note that these

shocks are non-fundamental in the sense that they do not directly affect payoffs, except to

the extent that they affect the aggregate action ā ∈ Ā.

We define ᾱ : S × R × Z → Ā as a function mapping exogenous states to an aggregate

action. Let Ā be the space of all such functions.9 One may think of ᾱ ∈ Ā as the “aggregate

strategy,” as this function will be determined endogenously by aggregating over the individual

agents’ strategies.

We will allow agents to learn not only about the exogenous states, but also about other

agents’ actions. Agents will optimally choose which objects to pay attention to; in order to

facilitate this choice, we specify their prior over the larger S×R×Z×Ā space. We construct

this prior as follows.

Let V ≡ ∆
(
S ×R× Z × Ā

)
denote the space of probability measures over S×R×Z×Ā.

For any prior µ0 ∈ U0 over exogenous states and any aggregate action function ᾱ ∈ Ā, this

pair induces a probability measure over the larger space. We let φĀ : U0 × Ā → V denote a

mapping from any pair µ0, ᾱ to its induced probability measure, defined as follows:

φĀ {µ0, ᾱ} (s, r, z, ā) = µ0 (s, r, z) 1 (ā = ᾱ (s, r, z)) , ∀s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā (2)

We define the space of all probability measures that may be generated on S×R×Z × Ā by

some pair (µ0, ᾱ) as

V0 =
{
ν ∈ V : ∃ µ0 ∈ U0 and ᾱ ∈ Ā s.t. ν = φĀ {µ0, ᾱ}

}
.

9We are restricting the aggregate action to be a deterministic function of (s, r, z). However, as we will
discuss below, the state z ∈ Z can be thought of as a “sunspot.”
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Thus, V0 ⊆ V .
Given a prior µ0 ∈ U0 and an aggregate action function ᾱ ∈ Ā, the induced prior on the

larger space ν0 ∈ V0 is given by ν0 = φĀ {µ0, ᾱ}.

Agents’ strategies. We now consider the choices of the agents. In the game with exoge-

nous information, an individual agent chooses her own action based on some signal ωj ∈ Ω,

where Ω is a signal alphabet with cardinality weakly greater than RL (and hence all action

spaces). An individual agent’s strategy is a mapping from signals to actions, αj : Ω → Ai.

Let Ai be the space of all possible strategies for a player of type i; in this game we say that

an agent chooses an action strategy αj ∈ Ai.
When we study games with exogenous information, the action strategies αj are the only

choice variables. In games with endogenous information acquisition, agents also choose the

the signal alphabet Ω and the structure of the signals ωj.10 A signal structure is a conditional

probability distribution function

νj : S ×R× Z × Ā→ ∆ (Ω) .

where ∆ (Ω) denotes the space of probability measures on Ω; let VΩ be the space of all

such functions. That is, νj (ω|s, r, z, ā) denotes the probability of observing signal ω ∈ Ω

conditional on the aggregate state (s, r, z, ā). Note that our setup prevents agents from

learning about any other particular agent’s action, but allows agents to learn about the

aggregate (or average) actions of her own and other types. In allowing rationally inattentive

agents to learn about the equilibrium actions of other agents, our analysis builds on Denti

[2015].

To summarize, with endogenous information acquisition, an individual agent chooses both

a strategy αj ∈ Ai and a signal structure νj ∈ VΩ in order to maximize his or her payoffs

subject to some cost of information acquisition. We discuss these costs after introducing

some notation for signal probabilities and posteriors.

Posterior distributions. Take any signal structure (conditional probability) νj ∈ VΩ

chosen by the agent on the larger space, S×R×Z×Ā. A signal structure νj ∈ VΩ and a prior

ν0 ∈ V0 together induce a joint distribution on S×R×Z×Ā×Ω. The marginal distribution on

10A standard result in rational inattention, which will apply in our setting, is that it is without loss of
generality to assume the space of signals Ω is the space of actions (Ai for agents of type i).
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Ω associated with this joint distribution is the agent’s unconditional probability of observing

signal ω ∈ Ω,

π
{
νj, ν0

}
(ω) =

∑
s∈S,r∈R,z∈Z

∫
Ā

νj (ω|s, r, z, ā) ν0 (s, r, z, ā) dā, (3)

with π {νj, ν0} ∈ ∆ (Ω).

This joint distribution also induces posteriors (conditional on ω ∈ Ω) on both the larger

S ×R× Z × Ā space and the smaller S ×R× Z space.

Posteriors on the larger space. We can write the agent’s posterior over (s, r, z, ā) condi-

tional on observing any signal ω ∈ Ω as

νω
{
νj, ν0

}
(s, r, z, ā) =

νj (ω|s, r, z, ā) ν0 (s, r, z, ā)

π {νj, ν0} (ω)
, (4)

consistent with Bayes’ rule and assuming π {νj, ν0} (ω) > 0. Note that, if ν0 ∈ V0, then

νω ∈ V0 for all ω ∈ Ω.

Posteriors on the smaller space. We can write the agent’s posterior over (s, r, z) condi-

tional on observing any signal ω ∈ Ω as

µω
{
νj, ν0

}
(s, r, z) =

∫
Ā
νj (ω|s, r, z, ā) ν0 (s, r, z, ā) dā

π {νj, ν0} (ω)
, (5)

consistent with Bayes’ rule and assuming π {νj, ν0} (ω) > 0. Note that µω ∈ U0 for all ω ∈ Ω.

We adopt the convention that, for zero probability signals, the posteriors are equal to

the priors over the relevant space.

Costs of information acquisition and posterior-separability. Agents face a cost of

information acquisition. We generalize the standard rational inattention setup and define

the cost of information acquisition of an agent of type i by a function Ci
Ω : VΩ × V0 → R+.

An agent j of type i which chooses signal structure (conditional distribution) νj ∈ VΩ given

prior ν0 incurs information costs

Ci
Ω

(
νj, ν0

)
,

where the subscript Ω indicates the signal alphabet over which the agent chooses its signal

structure. We thereby allow information acquisition costs to vary across types.

Given our discussion above about how to transform signal structures over the larger
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space to signal structures over the smaller space, we may at times also use the nota-

tion Ci
Ω (νj, µ0; ᾱ) to denote the agent’s cost of information acquisition, noting that ν0 =

φĀ{µ0, ᾱ}. This notation makes clear that the agent’s cost of choosing a signal structure νj

might depend on both the exogenous prior µ0 and (at least potentially) the aggregate action

function ᾱ ∈ Ā. We discuss this latter possibility shortly.

It is without loss of generality to impose the following assumption on the cost function.

Assumption 2. For all µ0 ∈ U0 and ᾱ ∈ Ā,

1. The cost function Ci
Ω (νj, ν0) is zero if the signal structure νj is uninformative (νω{νj, ν0} =

ν0 ∀ω ∈ Ω s.t.πj (ω) > 0).

2. Take νj ∈ VΩ and ν̂j ∈ VΩ̂ for some signal alphabets Ω and Ω̂. If νj Blackwell-dominates

ν̂j in the sense of Blackwell [1953], then Ci
Ω (νj, ν0) ≥ Ci

Ω̂
(ν̂j, ν0).

3. The cost function Ci
Ω (νj, ν0) is convex in νj.

As discussed by Caplin and Dean [2015], and invoking Lemma 1 of Hébert and Wood-

ford [2018a],11 these assumptions are without loss of generality. The first assumption that

uninformative signal structures have zero cost is simply a normalization. Next, any behavior

that could be observed for a rationally inattentive agent with a cost function not satisfying

these conditions could also be observed for a rationally inattentive agent with a cost function

satisfying these conditions. The intuition for this result comes from the possibility of the

agent pursuing mixed strategies over actions conditional on a signal realization and over

choices of signal structures.

Our next assumption requires that the information costs we study are continuous. This

assumption is phrased in a somewhat technical fashion in order to account for the possibility

that the signal space Ω is not a finite set.

Observe by the finiteness of S×R×Z and Ā ⊆ RL×|I| that Ā can be viewed as a subset

of RL×|I|×|S|×|R|×|Z| and endowed with the standard (Euclidean) topology. For the signal

structures µj ∈ UΩ, we use the topology of weak convergence for each S ×R× Z.

Assumption 3. Under the topology of weak convergence on VΩ and V0, the cost functions

Ci
Ω (νj, ν0) are continuous in the product topology of VΩ × V0.

11Lemma 1 of Hébert and Woodford [2018a] allows us to replace the Caplin and Dean [2015] “mixture
feasibility” condition with convexity. Hébert and Woodford [2018a] prove it in the context of a finite signal
alphabet, but nothing in the proof depends on the alphabet being finite.
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Assumption 2 implies continuity in νj (due to convexity), holding fixed ν0. Assumption

3 adds the requirement of continuity in (νj, ν0), which is equivalent to continuity in (νj, ᾱ)

holding fixed µ0.

Next, we restrict attention to information costs that are “posterior-separable,” in the

terminology of Caplin et al. [2018]. Posterior-separable cost functions can be written as the

expected value of a divergence between the agents’ posterior and prior beliefs. A divergence

is a measure of how “close” or “far” two distributions are from one another.12 To capture

the idea that the action of other agents might influence the cost of information, we define

these divergences on the larger space of probability measures, V0.

Take any signal structure νj ∈ VΩ and prior ν0 ∈ V0. The class of posterior-separable

cost functions we study can be written as

Ci
Ω

(
νj, ν0

)
=

∫
Ω

π
{
νj, ν0

}
(ω)Di

(
νω{νj, ν0}||ν0

)
dω, (6)

where Di : V0×V0 → R+ is a divergence from the agents’ prior ν0 to posterior νω, convex in

its first argument and continuous on V0 × V0.13

Assumption 4. For all i ∈ I, the cost function Ci is posterior-separable as defined by

equation (6).

The cost function in (6) makes evident why the cost of information acquisition may

depend on the aggregate action. Recall that agents are endowed with a common prior

ν0 ∈ V0 over the larger state, given by ν0 = φĀ {µ0, ᾱ}. Different aggregate action functions

ᾱ ∈ Ā, induce different priors over the larger state. This affects an individual agent’s cost of

information acquisition in two ways. First, the prior enters directly as the second argument

of the divergence—intuitively, the function ᾱ affects the distribution of what the agent is

trying to track. Second, the prior enters indirectly through the first argument, that is, the

agent’s posterior, νω.

Depending on the shapes of these divergences, different aggregate action functions ᾱ ∈ Ā
may affect the cost of information acquisition for agents, and may thereby induce agents to

12A divergence is a function of two probability measures that is weakly positive and zero if and only if
the measures are identical. Unlike a distance, a divergence does not need to be symmetric, and does not
necessarily satisfy the triangle inequality.

13Convexity in the first argument is implied by Assumption 2 and continuity (under the weak topology)
by Assumption 3. Also note that we have defined the divergence Di on V0 rather than the entire space
V = ∆(S × R × Z × Ā); all priors and posteriors in our problem will remain in V0, and therefore it is
unnecessary to define the divergence on the larger space.
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choose different signal structures in order to minimize these costs.

Invariance. We next describe a concept called “invariance,” and introduce an assumption

related to invariance on the divergences that define our posterior-separable cost functions.

This assumption gives meaning to our distinction between the payoff-irrelevant states r ∈ R
and z ∈ Z, and explains why we interpret the states z ∈ Z as sunspots.

Invariant divergences are monotone with respect to “coarsenings” of the state space.

They have been described in the information geometry literature (see e.g. Chentsov [1982]

or Amari and Nagaoka [2007]), and employed in economics by Hébert [2018] and Hébert and

Woodford [2018a]. Another term for coarsening is “compression,” and invariant divergences

have a close connection to the invariance-under-compression axiom described in Caplin et al.

[2018].

The literature has focused on whether or not divergences are monotone with respect to all

possible coarsenings of the state space. In contrast, we study divergences that are invariant

to some but not necessarily all coarsenings of the state space.

We begin by defining a particular type of coarsening that removes information about

Z. Let UZ ≡ ∆
(
S ×R× Ā

)
denote the space of probability measures on S × R × Ā

and let µZ ∈ UZ denote a particular distribution on this space; the subscript Z indicates

the dimension that is missing, a convention we will follow below. Given any probability

distribution ν ∈ V0 on the larger space, we can define the coarsening function γZ : V0 → UZ
by, for all (s, r, ā) ∈ S ×R× Ā,

γZ {ν} (s, r, ā) =
∑
z∈Z

ν (s, r, z, ā) . (7)

The function γZ is a coarsening in the sense that it takes a probability distribution on a

larger state space (S × R× Z × Ā) and projects it onto a smaller state space (S × R× Ā).

It is essentially “throwing out” all information about z, conditional on (s, r, ā); we again

use the subscript Z to indicate that the coarsening γZ discards information about z given

(s, r, ā).

We refer to the opposite transformation, going from the smaller space to the larger space,

as an embedding.14 First, note that there is only one way to “throw out” information about

a variable: one simply sums the joint probabilities over that variable. In contrast, there are

14Chentsov [1982] uses the term “Markov congruent embedding.”
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many ways of “gaining” information. We therefore define the set of all possible embeddings.

We say an embedding φZ : UZ → V0 is a function that maps probability measures on the

smaller (S ×R× Ā) space to measures on the larger (S ×R× Z × Ā) space; any particular

embedding may be defined in terms of its associated conditional distribution φ̂Z (z|s, r, ā) as

follows:15

φZ {µZ} (s, r, z, ā) = φ̂Z (z|s, r, ā)µZ (s, r, ā) . (8)

There are many possible conditional distribution functions φ̂Z ; each maps one-to-one to an

embedding operator φZ . Let ΦZ be the set of all possible embeddings from UZ to V0.

Note that we have in fact already seen an embedding, but one defined on a different di-

mension of the probability space. The function φĀ {µ0, ᾱ} defined in (2) is an embedding from

a smaller state space (S×R×Z) to a larger one (S×R×Z×Ā). The associated conditional

distribution function for this specific embedding is simply φ̂Ā (ā|s, r, z) = 1 (ā = ᾱ (s, r, z)).

Armed with these definitions, we are now in a position to define “invariance with respect

to ΦZ .”

Definition 1. A divergence D : V0×V0 → R+ is invariant with respect to ΦZ , or invariant

in Z, if for all φZ , φ
′
Z ∈ ΦZ and ν0, ν1 ∈ V0,

D (ν1||ν0) ≥ D (φZ {γZ {ν1}} ||φZ {γZ {ν0}}) = D (φ′Z {γZ {ν1}} ||φ′Z {γZ {ν0}}) . (9)

There are two parts to this definition. The first inequality in 9 defines monotonicity in

ΦZ . Intuitively, suppose we “throw away” information about z (i.e. apply γZ) from two

separate distributions ν0, ν1 ∈ V0, and then add back in information about z in the same

way for both distributions (i.e. apply φZ). Monotonicity requires that making the two

distributions more similar in this sense reduces the divergence from one to the other.

The second equality in 9 defines invariance in ΦZ (as opposed to the weaker property of

monotonicity). Suppose we take two distributions µZ , µ
′
Z ∈ UZ on the smaller S×R×Ā space

and add information about z by applying the same embedding operator to both. Invariance

means that it doesn’t matter which embedding operator we use, the resulting distributions

will always have the same divergence from one to the other. That is, it does not matter how

the coarsened distributions µZ , µ
′
Z ∈ UZ are embedded in the larger space, provided that

they are embedded in the same way.

15To ensure that the resulting distribution on ∆(S × R × Z × Ā) remains in V0, we require that for all

s ∈ S, r ∈ R, and ā, ā′ ∈ Ā, the supports of φ̂Z(·|s, r, ā) and φ̂Z(·|s, r, ā′) do not intersect.
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In other words, throwing away information about z, conditional on (s, r, ā), can only

decrease costs. We impose this as follows.

Assumption 5. For all i ∈ I, the divergence Di associated with the posterior-separable cost

function Ci is invariant with respect to ΦZ.

This assumption highlights the key distinction between the r and the z states in our

model; it is essentially a definition of r relative to z. While neither r nor z are directly

payoff-relevant, divergences are invariant with respect to ΦZ .

The implication of this assumption is that if the agent does not care about z per se, only

how it affects ā, then there is no reason for the agent to acquire any information about z.

On the other hand, the agent may find it cheaper to obtain signals correlated with r than to

gather no information about r at all, even if she has no particular concern for the value of

r. In contrast, conditional on (s, r, ā), the agent never has any reason to acquire additional

information about z—this would only increase the agent’s information costs.

The following lemma states this idea more formally. Define µjZ : S × R × Ā→ ∆ (Ω) as

a signal structure (conditional distribution) on the space S ×R× Ā, and let UZ,Ω be the set

of all such signal structures. That is, µjZ (ω|s, r, ā) gives the probability of observing signal

ω ∈ Ω conditional on the realization of (s, r, ā).

Lemma 1. Assume that the cost function CΩ satisfies Assumptions 2, 4, and its associated

divergence D satisfies Assumption 5. Fix a prior ν0 ∈ V0. Take any signal structure µZ ∈
UZ,Ω and define the signal structure ν̄ {µZ} ∈ VΩ by

ν̄ {µZ} (ω|s, r, z, ā) = µZ (ω|s, r, ā)

for all s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā, ω ∈ Ω. Let V̄Ω {µZ} be the set of all signal structures

ν ′ ∈ VΩ that satisfy the following condition:

µZ (ω|s, r, ā) =

∑
z∈Z (ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā))∑

z∈Z ν0 (s, r, z, ā)

for all s ∈ S, r ∈ R, ā ∈ Ā, ω ∈ Ω. Note that ν̄ {µZ} ∈ V̄Ω {µZ} ⊂ VΩ.

Then, for all priors ν0 ∈ V0 and all signal structures µZ ∈ UZ,Ω,

CΩ (ν̄ {µZ} , ν0) ≤ CΩ (ν ′, ν0) ∀ν ′ ∈ V̄Ω {µZ} .

Proof. See the appendix, 7.1.
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The signal structure ν̄ as well as all signal structures ν ′ ∈ V̄Ω {µZ} are constructed so as

to induce the same conditional distribution µZ (ω|s, r, ā). The only difference between ν̄ and

any other ν ′ is that the latter may generate different conditional probability distributions

over ω ∈ Ω given states (s, r, z, ā) and (s, r, z′, ā) for z 6= z′ whereas the former treats these

two realizations as the same. This is why we call ν̄ the “minimally informative” out all signal

structures that coarsen to µZ ; any other signal structure ν ′ “pays attention to noise” in a

way that ν̄ does not.

Lemma 1 states that if the cost function is invariant with respect to ΦZ , the minimally

informative signal structure is also the least costly. In other words, paying attention to z is

always costly.

There are two immediate implications of this lemma. The first is that we may write

the agent’s problem on the (s, r, ā) space, with choice variable µZ ∈ UZ,Ω. Note that this

is possible only because (i) the agent’s utility function does not directly depend on z and

(ii) the agent’s costs are invariant with respect to ΦZ ; if either property did not hold,

this simplification would not be valid. The second immediate implication is conditional

independence: conditional on (s, r, ā), the agent’s signal ωj will be independent of z.

This behavior is what Caplin et al. [2018] call invariance under compression. Although

their paper and the literature in general has focused on divergences that are simply “invari-

ant,” meaning that they are invariant with respect to all possible embeddings, we in contrast

have thus far only assumed invariance with respect to one possible embedding, ΦZ .

2.3 Example: Beauty Contest with endogenous information choice

Consider the simple beauty contest game example described previously. This game has been

studied extensively under exogenous information. Here we consider the individual agent’s

problem with endogenous information choice.

Individual Agent’s Problem. Given a prior ν0 ∈ V0, the agent chooses an action strategy

αj ∈ Ai and a signal structure νj ∈ VΩ in order to maximize

max
∑

s∈S,r∈R,z∈Z

∫
Ā

(∫
Ω

u (α (ω) , ā, s) νj (ω|s, r, z, ā) dω

)
ν0 (s, r, z, ā) dā− Ci

Ω

(
νj, ν0

)
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subject to probability feasibility condition∫
Ω

νj (ω|s, r, z, ā) dω = 1, s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā (10)

The agent’s first order conditions (assuming interior solutions) are given by

α (ω) =
∑

s∈S,r∈R,z∈Z

∫
Ā

[(1− χ) β (s) + χā] νω{νj, ν0} (s, r, z, ā) dā, ∀ω ∈ Ω, (11)

and

u (α (ω) , ā, s) ν0 (s, r, z, ᾱ)− ∂Ci
Ω (νj, ν0)

∂νj (ω|s, r, z, ā)
− κ (s, r, z, ā) ν0 (s, r, z, ᾱ) = 0 (12)

for all s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā, ω ∈ Ω where κ (s, r, z, ā) denotes the Lagrange multiplier

on the probability feasibility constraint in (10) for state (s, r, z, ā).

The FOC in (11) may be rewritten as the familiar best response function encountered in

this class of games:

α (ω) = (1− χ)E [β (s) |ω] + χE [ā|ω] , ∀ω ∈ Ω

Thus, given the agent’s information structure, the agent’s best response is simply to play

an action which is a weighted linear combination of her optimal strategy under complete

information, β (s), and of the average action ā, conditional on her “signal” ω. The weight

χ < 1 dictates how much the agent cares about matching the average action relative to the

fundamental.

The less familiar FOC in (12) is the agent’s optimality condition for her signal structure.

Take any two signals ω, ω′ ∈ Ω. Conditional on any realization of the aggregate state, the

agent chooses how much probability mass to put on these signals. Rearranging equation (12)

for ω, ω′ ∈ Ω conditional on the same (s, r, z, ᾱ) yields:

u (α (ω) , ā, s)− u (α (ω′) , ā, s) =
1

ν0 (s, r, z, ᾱ)

(
∂Ci

Ω (νj, ν0)

∂νj (ω|s, r, z, ā)
− ∂Ci

Ω (νj, ν0)

∂νj (ω′|s, r, z, ā)

)
.

Optimality requires that the difference in payoffs across the two signals, given optimal ac-

tion strategy α (ω), must be equal to their marginal rate of transformation (in terms of

information acquisition costs).
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2.4 Examples of Cost Functions

In this sub-section, we provide several examples from the literature of posterior-separable

cost functions. The examples we introduce are based on the standard mutual information

cost function (Sims [2003]), a cost function based on Tsallis entropy (Caplin et al. [2018]),

the neighborhood-based cost function of Hébert and Woodford [2018b], and the LLR cost

function of Pomatto et al. [2018]. Each of these examples is posterior-separable and satisfies

Assumptions 2, 3, and 4 by construction. We may therefore describe each of these cost

functions in terms of their associated divergences D : V0 × V0 → R+, and we discuss the

implications of invariance with respect to ΦZ (Assumption 5).

Example 1. Mutual Information

We begin with the standard mutual information cost function. In our context, the asso-

ciated divergence is the Kullback-Leibler (KL) divergence defined on the space V0,

DKL (ν1||ν0) =
∑

s∈S,r∈R,z∈Z

∫
Ā

ν1 (s, r, z, ā) ln

(
ν1 (s, r, z, ā)

ν0 (s, r, z, ā)

)
dā,

adopting the convention that 0 ln 0 = 0. Because the KL divergence is an invariant divergence

in the standard (information-geometric) sense, it is invariant with respect to ΦZ .

Example 2. Tsallis Entropy

The Kullback-Leibler divergence is uniquely defined, within the class of Bregman di-

vergences, by invariance. A Bregman divergence is defined in our context using a convex

function H : V0 → R,

DH(ν1||ν0) = H(ν1)−H(ν0)− (ν1 − ν0) · ∇H(ν0),

where ∇H(·) denotes the gradient. The particular H function that defines the Kullback-

Leibler divergence is Shannon’s entropy. Caplin et al. [2018] call cost functions based on

Bregman divergences “uniformly posterior-separable.”

Caplin et al. [2018] criticize the mutual information cost function by demonstrating that

the behavioral implications of invariance are inconsistent with experimental evidence. They

propose as an alternative Bregman divergences based on Tsallis entropy. Tsallis entropy is

a generalization of Shannon’s entropy. In our context, to ensure invariance with respect to
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ΦZ , we treat the Z dimension differently than the other dimensions. In our context, the H

function describing Tsallis entropy is defined, using the parameter ρ ∈ R,

HTS,ρ(ν) =
1

1− ρ
(1−

∑
s∈S,r∈R

∫
Ā

[
∑
z∈Z

ν(s, r, z, ā)]ρdā).

In the limit as ρ→ 1, this function approaches (the negative of) Shannon’s entropy.

Observe that this H function is really defined on the UZ space, since it in effect applies

the γZ coarsening to its argument. An implication of this assumption is that it is costless for

an agent with the Tsallis-based cost function to observe z ∈ Z. In contrast, in the previous

(mutual information) example, observing z ∈ Z is costly. However, in both cases, invariance

with respect to ΦZ is satisfied.

Away from the ρ → 1 limit, the Bregman divergence based on Tsallis entropy, DTS,ρ,

is not invariant. However, it is still invariant to certain transformations, even though it is

not invariant in the standard sense. We will discuss the particular invariance properties of

Tsallis entropy and the resulting equilibrium implications as part of our analysis below.

Example 3. Neighborhood-Based Cost Functions

In contrast, the neighborhood-based cost functions of Hébert and Woodford [2018b] are

not in general invariant in any sense. These cost functions are also Bregman divergences,

but defined with a different H function. To define a neighborhood-based cost function, we

need to define a topology on the space S × R × Z × Ā. A straightforward example is if

each of these spaces is a subset of the real numbers, in which case a possible topology is the

standard Euclidean topology.

A topology defines a set of neighborhoods, X, whose elements are sets of points in

S×R×Z × Ā. Given a neighborhood x ∈ X, we can define the probability of being in that

neighborhood under measure ν as

ν(x) =
∑

s∈S,r∈R,z∈Z

∫
Ā

ν(s, r, z, ā)1{(s, r, z, ā) ∈ x}dā.

The H function associated with the neighborhood-based cost function is

HN(ν) =
∑
x∈X

cx
∑

s∈S,r∈R,z∈Z

∫
Ā

ν(s, r, z, ā) ln(
ν(s, r, z, ā)

ν(x)
)1{(s, r, z, ā) ∈ x}dā,
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where cx is a weakly positive constant specific to each neighborhood.16

To ensure that invariance with respect to ΦZ is satisfied, we will assume that if (s, r, z, ā)

is in some neighborhood x with cx > 0, then (s, r, z′, ā) is also in x, for all x ∈ X such that

cx > 0, s ∈ S, r ∈ R, ā ∈ Ā, and z ∈ Z. Under this assumption, the topology in fact imposes

no structure on Z, and invariance with respect to ΦZ follows from the invariance properties

of the KL divergence.

Example 4. LLR Cost Functions

Our previous two examples were based on Bregman divergences. Pomatto et al. [2018]

propose, based on axiomatic considerations, a non-Bregman divergence and call the asso-

ciated cost functions the “LLR” cost functions. From their axioms, Pomatto et al. [2018]

derive a distance-like function between any two points in the state space.

Their divergence is, adapted to our context and assuming mutually absolutely continuous

ν1 and ν0,

DLLR(ν1||ν0) =
∑

s∈S,r∈R

∑
s′∈S,r′∈R

∫
ā∈Ā′

∫
ā′∈Ā′

β (s, r, ā, s′, r′, ā′)F (s, r, ā, s′, r′, ā′) dā′dā

where

F (s, r, ā, s′, r′, ā′) =

∑
z∈Z ν1 (s, r, z, ā)∑
z∈Z ν0 (s, r, z, ā)

ln

( ∑
z∈Z ν1 (s, r, z, ā)∑
z∈Z ν1 (s′, r′, z, ā′)

)
−ln

( ∑
z∈Z ν0 (s, r, z, ā)∑
z∈Z ν0 (s′, r′, z, ā′)

)
,

β(·) is a distance-like function between points in the state space, and

Ā′ =

{
ā′ ∈ Ā|

∑
z∈Z

ν0(s′, r′, z, ā′) > 0

}
.

Note that, as in the Tsallis case, we have made it costless for the agent to observe z ∈ Z,

ensuring that invariance with respect to ΦZ is satisfied.

Like the neighborhood-based cost function, the LLR cost function induces a notion of

distance on the state space. We will find, as a result, that the two cost functions make similar

predictions with respect to non-fundamental volatility and the efficiency of equilibria.

Having laid out our assumptions on payoffs and information costs, and provided examples

of each, we next define equilibrium and prove its existence.

16This example uses Shannon’s entropy within each neighborhood; Hébert and Woodford [2018b] define a
more general class using a generalized version of Shannon’s entropy.
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3 Equilibrium Definition and Equilibrium Existence

In this section we begin by defining our equilibrium concept under two scenarios: (i) the game

with exogenous information and (ii) the game with endogenous information acquisition. We

then establish equilibrium existence under both scenarios.

3.1 Equilibrium Definitions.

With exogenous information, the class of games we study may be thought of as large games

with dispersed information in which agents only choose their action strategy. Adding en-

dogenous information changes the focus of our analysis from the agent’s choice of actions

given their signals to their choice of signals.

Consider first the game under the assumption of exogenous information. We study signal

structures are exogenous in two senses: they are fixed and not chosen by the agents, and

the distributions of signals do not depend on ā ∈ Ā, and endogenous object. Let VĀ,Ω ⊂ VΩ

be the set of signal structures νj : S × R × Z × Ā → ∆(Ω) such that, for all (ω, s, r, z) ∈
Ω× S ×R× Z and ā, ā′ ∈ Ā,

νj(ω|s, r, z, ā) = νj(ω|s, r, z, ā′).

As discussed in the introduction, these kinds of exogenous signal structures have been the

focus of the literature on beauty contests.

Anticipating the endogenous information game, we restrict signal distributions to be

identical within type. We also assume that, conditional on (s, r, z), the realizations of signals

within and across types are independent. That is, it is the distributions, not the realizations,

that are identical within a type.

Each agent is infinitesimal, meaning that the agent treats the joint distribution of payoff

relevant and irrelevant states and aggregate actions as exogenous. We will focus on “type-

symmetric Bayesian Nash equilibria” in which each agent within a type chooses the same

action strategy. We will also apply the law of large numbers and require in our equilibrium

definition that each agent’s average action aj be consistent with the average action for her

type, āi.

We will describe the problem of the agent under exogenous information in a slightly

unusual way to emphasize the connection between the problem with exogenous information

and the problem with endogenous information. Mixed action strategies are mappings from
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the realizations of the signals Ω to distributions over actions, ∆ (Ai). Given any mixed

strategy σi : Ω→ ∆ (Ai) and exogenous signal structure νiΩ ∈ VΩ, we can define the induced

conditional distribution over actions, νiA : S ×R× Z × Ā→ ∆(Ai),

νiA(a|s, r, z, ā) =

∫
Ω

σi(a|ω)νiΩ(ω|s, r, z, ā)dω. (13)

Let V iA be the set of all conditional distribution over actions. Note that, because νiΩ ∈ VĀ,Ω,

the conditional distribution νiA does not in fact depend on ā.

Observe that the mapping σ can be thought of as a “garbling” in the sense of Blackwell

[1953]; that is, by adding noise in the relationship between signals and actions, the mixed

strategies σ ensure that the distributions νiA are weakly Blackwell-dominated by the dis-

tributions νiΩ. In fact, by Blackwell’s theorem, the set of conditional action distributions

νiA ∈ V iA that can be feasibly created by any mixed strategy σ are precisely those that are

Blackwell-dominated by νiΩ. Let V iBD (νiΩ) ⊆ V iA be the subset of V iA Blackwell-dominated

by νiΩ, noting again that these conditional distributions are not in fact a function of ā.

Our definition of equilibrium under exogenous information treats νiA ∈ V iBD(νiΩ) as the

choice variable of the agent.

Definition 2. Given a prior µ0 ∈ U0 and a set of signal distributions {νiΩ ∈ V iĀ,Ω}i∈I , a

type-symmetric Bayesian Nash equilibrium (TSBNE) of the game under exogenous

information is a set of strategies {νiA ∈ V iA}i∈I and an aggregate action profile ᾱ ∈ Ā such

that

(i) For each i ∈ I, the strategies νiA ∈ V iBD (νiΩ) are best responses:

νiA ∈ sup
νiA∈V

i
BD(νiΩ)

∑
s∈S,r∈R,z∈Z

∫
Ā

[∫
Ai

ui
(
aj, ā, s

)
νjA
(
aj|s, r, z, ā

)
daj
]
ν0{µ0, ᾱ} (s, r, z, ā) dā

(ii) for all i ∈ I, the mean is consistent with the type’s average action∫
Ai

ajνiA(aj|s, r, z, ᾱ(s, r, z))daj = ᾱi (s, r, z) ∀i ∈ I, s ∈ S, r ∈ R, z ∈ Z, s.t.µ0 (s, r, z) > 0.

Viewed from this perspective, the game under exogenous information is not very different

from the game under endogenous information. In fact, the definition is almost identical,

except that instead of restricting strategies to be Blackwell-dominated by νiΩ, we will allow

any strategies in V iA, subject to the convex cost of information Ci
A(·). Put another way,
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we are replacing a restriction on a convex subset of V iA (i.e. V iBD(νiΩ)) with a convex cost

function on V iA. Our definition with endogenous information follows.

Definition 3. Given a common prior µ0 ∈ U0, a type-symmetric Bayesian Nash

equilibrium (TSBNE) of the game under endogenous information is a set of strategies

{νiA ∈ V iA}i∈I and an aggregate action profile ᾱ ∈ Ā such that

(i) For each i ∈ I, the strategies νiA ∈ V iA are best responses,

νiA ∈ sup
νjA∈V

i
A

∑
s∈S,r∈R,z∈Z

∫
Ā

[∫
Ai

ui
(
aj, ā, s

)
νjA
(
aj|s, r, z, ā

)
daj
]
ν0{µ0, ᾱ} (s, r, z, ā) dā (14)

− Ci
A

(
νjA, ν0{µ0, ᾱ}

)
,

(ii) for all i ∈ I, the mean is consistent with the type’s average action,∫
Ai

ajνiA(aj|s, r, z, ᾱ (s, r, z))daj = ᾱi (s, r, z) ∀i ∈ I, s ∈ S, r ∈ R, z ∈ Z, s.t.µ0 (s, r, z) > 0.

(15)

To streamline our exposition, we have invoked the usual result in rational inattention

problems that it is without loss of generality to equate signals and actions. That is, instead

of writing the problem as being over choice variables σj : Ω→ ∆ (Ai) and νj ∈ V iΩ, we have

written the problem as a choice over the conditional distribution of actions, νiA ∈ V iA.

In the problem with exogenous information, we have assumed that the signals are not

a function of the endogenous actions ā. In the problem with endogenous information, the

following lemma demonstrates that it is without loss of generality to make this assumption.

Lemma 2. Under Assumptions 2, 3, and 4, in the equilibrium with endogenous information

acquisition (Definition 3), it is without loss of generality to assume that the signals νiA do

not depend on ā conditional on (s, r, z); that is, νiA ∈ V iĀ,A for all i ∈ I.

Proof. See the appendix, 7.2.

The intuition for this lemma is straight-forward: zero-probability (s, r, z, ā) values have

no impact on either unconditional signal probabilities or posteriors, and therefore do not

change cost functions or expected utility.
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3.2 Equilibrium Existence

Our first result shows that a TSBNE exist under both exogenous and endogenous informa-

tion. The result uses Kakutani’s fixed point theorem in the usual way, relying on the finite-

ness of S×R×Z, the continuity of the utility function, and (in the endogenous information

case) the convexity and continuity of the information cost function. We have combined the

results for the endogenous and exogenous information cases to emphasize their similarities.

Proposition 1. Under Assumption 1, a TSBNE of the game under exogenous information

(Definition 2) exists. Under Assumptions 1, 2, 3, and 4, a TSBNE of the game under

endogenous information (Definition 3) exists.

Proof. See the appendix, 7.3.

We have established that our equilibria exist, and can now begin to study these equilibria.

We will begin by investigating under what circumstances our equilibrium do and do not

exhibit “non-payoff-relevant” volatility. We will then investigate the circumstances under

which the equilibria are constrained efficient, defining constrained efficiency as being identical

to the solution of a planner’s problem. For both of these results, the focus of our investigation

will be the relationship between properties of the information costs Ci, and in particular the

associated divergences Di, and the properties of the equilibrium with endogenous information

acquisition.

4 Non-Payoff-Relevant Volatility in Equilibrium

We have emphasized that the exogenous states r ∈ R and z ∈ Z are not directly relevant

to payoffs, and interpreted them as a common signal and a sunspot, respectively. We next

consider the question of whether the equilibrium aggregate actions depend on these variables.

We begin by defining measurability in the context of the aggregate action function. We will

say the aggregate action function ᾱ is (r,s)-measurable if it does not depend on z, and

s-measurable if it does not depend on r nor z.

Definition 4. A TSBNE is (r,s)-measurable if ᾱ (s, r, z) = ᾱ (s, r, z′) for all s ∈ S,

r ∈ R, and z, z′ ∈ Z. A TSBNE is s-measurable if ᾱ (s, r, z) = ᾱ (s, r′, z′) for all s ∈ S,

r, r′ ∈ R, z, z′ ∈ Z.

In this section we find sufficient conditions under which (r,s)-measurable and s-measurable

equilibria exist.
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4.1 Existence of (r,s)-measurable equilibria.

Our first result demonstrates that an (r,s)-measurable equilibrium always exists. This result

is an implication of our focus on large games in which individual agents take the aggregate

action function as given, the continuity of utility functions, and (critically) our assumption

of invariance on ΦZ (Assumption 5).

Proposition 2. Assume that payoffs {ui}i∈I satisfy Assumption 1, that cost functions

{Ci
Ω}i∈I satisfy Assumptions 2, 3, and 4, and 5. Then an (r,s)-measurable TSBNE of the

game under endogenous information (Definition 3) exists.

Proof. See the appendix, 7.4.

Our proof of this result is essentially a restatement of our existence proof combined with

an application of Lemma 1, our lemma characterizing behavior under ΦZ invariance. The

key observation is that, with ΦZ invariance, agents optimally choose actions that conditional

on (s, r, ā), are independent of z. As a result, if agents expect an (r,s)-measurable ᾱ function,

they will best-respond with a policy whose mean action is indeed (r,s)-measurable.

We have suggested interpreting the states z ∈ Z as a sunspot. What Proposition 2

demonstrates is that sunspots are not required for the existence of equilibrium in our setting.

Note that we do not mean to imply the non-existence of equilibria with sunspots, only that

equilibria without sunspots exist. This is a common result in large games, but would not

always be expected in games with a finite number of players.

4.2 Existence of s-measurable equilibria.

We next consider sufficient conditions under which an s-measurable equilibrium exists. Note

that s-measurable equilibria are the equilibria which contain zero non-fundamental volatility,

explaining why we are interested in the existence or non-existence of such equilibria.

We continue to assume divergences satisfy invariance with respect to Z, but we now

introduce a additional form of invariance which we refer to as RZ-monotonicity. Just

as Z-invariance led to (r,s)-measurability, we now show that RZ-monotonicity leads to

s-measurability. The intuition is essentially identical to our previous result: with RZ-

monotonicity, best responses will be independent of (r, z) conditional on (s, ā) and which

will imply that best-responses to an s-measurable ᾱ function will be s-measurable.

We begin by defining a coarsening with respect to both R and Z. Let URZ ≡ ∆
(
S × Ā

)
denote the space of probability measures on S × Ā and let µRZ ∈ URZ denote a particular
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distribution on this space; again the subscript RZ indicates the dimensions that are missing.

Given any probability distribution ν ∈ V0 on the larger space, we define the coarsening

function γRZ : V0 → URZ by

γRZ {ν} (s, ā) =
∑

r∈R,z∈Z

ν (s, r, z, ā) . (16)

This function thereby coarsens in both r and z: it “throws away” all information about r

and z conditional on (s, ā).

We similarly define an embedding φRZ : URZ → V0 as a function that maps probability

measures on the smaller (S × Ā) space to measures on the larger (S × R × Z × Ā) space;

any particular embedding may be defined in terms of its associated conditional distribution

φ̂RZ (r, z|s, ā) as follows:17

φRZ {µRZ} (s, r, z, ā) = φ̂RZ (r, z|s, ā)µRZ (s, ā) . (17)

Again there are many possible conditional distribution functions φ̂RZ ; each maps one-to-one

to a particular embedding operator φRZ . Let ΦRZ be the set of all possible embeddings from

URZ to V0.

We next define a composition of the coarsening operation and a specific embedding φRZ ∈
ΦRZ . We let ηRZ : V0 × V0 → V0 denote the operation that coarsens its first argument in

both r and z, then embeds using the conditional distribution of its second argument. That

is,

ηRZ {ν1, ν0} (s, r, z, ā) =


ν0(s,r,z,ā)

γRZ{ν0}(s,ā)
γRZ {ν1} (s, ā) if γRZ {ν0} (s, ā) > 0

0 if γRZ {ν0} (s, ā) = 0.

To apply this operation, we require that γRZ {ν1} (s, ā) be absolutely continuous with re-

spect to γRZ {ν0} (s, ā). Intuitively, this operation takes the distribution ν1 ∈ V0, discards

its conditional distribution of (r, z) given (s, ā), but then replaces it with the conditional

distribution from ν0, that is, embeds using φ̂RZ (r, z|s, ā) = ν0(s,r,z,ā)
γRZ{ν0}(s,ā)

. The end result is a

distribution that is “more like” ν0 than ν1 was originally. By construction, ηRZ {ν0, ν0} = ν0.

Armed with this composition of operators, we define RZ-monotonicity as follows.

Definition 5. A divergence D : V0 × V0 → R+ is RZ-monotone if for all ν0, ν1 ∈ V0 such

17Again to ensure that the resulting distribution on ∆(S × R × Z × Ā) remains on V0, for all s ∈ S and

ā, ā′ ∈ Ā, we require that the supports of φ̂R(·|s, z, ā) and φ̂R(·|s, z, ā′) do not intersect.
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that γRZ {ν1} � γRZ {ν0},

D (ν1||ν0) ≥ D (ηRZ {ν1, ν0} ||ν0) . (18)

where ηRZ {ν0, ν0} = ν0.

This form of monotonicity captures the idea that if we make ν1 more like ν0 in the sense

just described, this should reduce the divergence from ν0 to ν1. While this property seems

rather intuitive, we will show that it has strong (and perhaps undesirable) implications for

behavior.

Monotonicity in RZ is a weaker property than invariance in RZ. Recall our defini-

tion of invariance in ΦZ in Definition 1 and suppose we were to also assume invariance in

ΦR. The first inequality in (18) looks similar to the inequality in (9). However, in (18)

we use a particular embedding: that associated with the conditional distribution of ν0,

φ̂RZ (r, z|s, ā) = ν0(s,r,z,ā)
γRZ{ν0}(s,ā)

. As already noted, this embedding ensures that if one were to

apply the composition operator ηRZ to ν0 it would get itself back: ηRZ {ν0, ν0} = ν0.

On the other hand RZ-invariance, or invariance with respect to both ΦZ and ΦR, would

further require that after coarsening in both r and z one could then embed using any con-

ditional distribution and the resulting “distance” would be equal. Formally, RZ-invariance

would require that, for all ν2 ∈ V0 satisfying the required absolute continuity,

D (ηRZ {ν1, ν0} ||ηRZ {ν0, ν0}) = D (ηRZ {ν1, ν2} ||ηRZ (ν0, ν2)) .

That is, RZ-invariance is RZ-monotonicity plus the additional requirement that the con-

ditional distribution of (r, z) conditional on (s, ā) under ν0 is irrelevant. Consequently,

RZ-invariance implies RZ-monotonicity, but the reverse is not true.

Armed with this definition, we next present the analog of Lemma 1, but with the addi-

tional assumption of RZ-monotonicity. We let µjRZ : S×Ā→ ∆ (Ω) denote a signal structure

(conditional distribution) on the space S×Ā and let URZ,Ω be the set of all such signal struc-

tures. That is, µjRZ (ω|s, ā) gives the probability of observing signal ω ∈ Ω conditional on

the realization of (s, ā).

Lemma 3. Assume that the cost function CΩ satisfies Assumptions 2, 4, and 5. Fix a prior

ν0 ∈ V0. Take any signal structure µRZ ∈ URZ,Ω and define the minimally-informative signal
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structure ν̄ {µRZ} ∈ VΩ by

ν̄ {µRZ} (ω|s, r, z, ā) = µRZ (ω|s, ā)

for all s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā, ω ∈ Ω. Let V ′Ω {µRZ} be the set of all signal structures

ν ′ ∈ VΩ that satisfy the following condition:

µRZ (ω|s, ā) =

∑
r∈R,z∈Z (ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā))∑

r∈R,z∈Z ν0 (s, r, z, ā)

for all s ∈ S, r ∈ R, ā ∈ Ā, ω ∈ Ω. Note that ν̄ {µRZ} ∈ V ′Ω {µRZ} ⊂ VΩ.

(i) If the divergence D associated with the cost function is RZ-monotone, then for all

priors ν0 ∈ V0 and all signal structures µRZ ∈ URZ,Ω,

CΩ (ν̄ {µRZ} , ν0) ≤ CΩ (ν ′, ν0) ∀ν ′ ∈ V ′Ω {µRZ} .

(ii) If the divergence D associated with the cost function is differentiable with respect to

ν1 at ν1 = ν0, and for all priors ν0 ∈ V0 and all signal structures µRZ ∈ URZ,Ω

CΩ (ν̄ {µRZ} , ν0) ≤ CΩ (ν ′, ν0) ∀ν ′ ∈ V ′Ω {µRZ} ,

then D is RZ-monotone.

Proof. See the appendix, 7.5.

As in Lemma 1, all signal structures ν ′ ∈ V ′Ω {µRZ}, including ν̄, are constructed so

as to induce the same conditional distribution µRZ (ω|s, ā). The signal structure ν̄ is the

“minimally informative” one in the sense that its conditional distributions of signals depend

on neither r nor z.

Lemma 3 states that RZ-monotonicity is equivalent to the statement that the minimally

informative signal structure ν̄ {µRZ} is the least-costly of all signal structures that coarsen

to µRZ . The distinction between monotonicity and invariance is what allows us to prove an

if-and-only-if result. Note that the additional assumption of differentiability at ν1 = ν0 is

imposed in the “only-if” part of the lemma but not in the “if” part of the lemma.

Armed with this result, we demonstrate that RZ-monotonicity is sufficient for the exis-

tence of s-measurable equilibria.
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Proposition 3. Assume that payoffs {ui}i∈I satisfy Assumption 1, that cost functions

{Ci
Ω}i∈I satisfy Assumptions 2, 3, and 4, and that the associated divergences {Di}i∈I are

RZ-monotone as in Definition 5. Then an s-measurable TSBNE of the game under endoge-

nous information (Definition 3) exists.

Proof. See the appendix, 7.6.

The proof is straightforward and is similar to that for Lemma 3. If agents’ information

costs are RZ-monotone, then agents optimally choose actions that, conditional on (s, ā), are

independent of both r and z. As a result, if they face an s-measurable ᾱ function, they will

best-respond with a policy whose mean action is indeed s-measurable. We now consider a

specific example.

4.3 Example: Beauty Contest with Kullback-Leibler Divergence.

We use an example to show how one may construct an s-measurable equilibria. Consider

the simple beauty contest game with Kullback-Leibler (KL) Divergence. The agent’s cost

function is given by

Ci
Ω

(
νj, ν0

)
=

∫
ω

πj (ω)DKL

(
νjω||ν0

)
dω =

∫
ω

πj (ω)

[ ∑
s∈S,r∈R,z∈Z

∫
Ā

νjω (s, r, z, ā) ln

(
νjω (s, r, z, ā)

ν0 (s, r, z, ā)

)
dā

]
dω

where πj (ω) =
∑

s∈S,r∈R
∫
Ā
νj (ω|s, r, z, ā) ν0 (s, r, z, ā) dā.

Consider the agent’s optimality conditions for her signal structure presented in equation

(12). The derivative of the KL cost function with respect to the signal structure is given by:

∂Ci
Ω (νj, ν0)

∂νj (ω|s, r, z, ā)
=
[
ln
(
νj (ω|s, r, z, ā)

)
− ln

(
πj (ω)

)]
ν0 (s, r, z, ā)

As a result, with KL divergence the optimality conditions in (12) reduce to:

u (α (ω) , ā, s)− ln

(
νj (ω|s, r, z, ā)

πj (ω)

)
= κ (s, r, z, ā)

for all (s, r, z, ᾱ) such that ν0 (s, r, z, ā) > 0. Again consider any two signals ω, ω′ ∈ Ω.

Rearranging this equation for ω, ω′ ∈ Ω conditional on the same (s, r, z, ᾱ) yields:

u (α (ω) , ā, s)− u (α (ω′) , ā, s) = ln

(
νj (ω|s, r, z, ā)

πj (ω)

)
− ln

(
νj (ω′|s, r, z, ā)

πj (ω′)

)
. (19)
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The left hand side of this equation—the difference in payoffs—depends on neither r nor z

by the assumption that these shocks are not payoff-relevant. Furthermore, the right hand

side—the difference in costs—is identical for all r ∈ R, z ∈ Z. Therefore, conditional on

(s, ā), the agent’s optimal choice of probability mass on ω, ω′ ∈ Ω must be independent of

(r, z) .

The agent finds it optimal to choose a signal structure that pays absolutely no attention to

“noise” in the form of (r, z). Note that this result in fact has nothing to do with the assumed

beauty-contest game payoffs; it is simply a consequence of KL divergence and the assumption

that r and z are payoff-irrelevant. KL divergence is RZ-invariant which implies it is also

RZ-monotone. From Lemma 3 this implies that the minimally-informative signal structure

is always the least costly. Combining this with the fact that both (r, z) are irrelevant for

payoffs gives us the result.

Next we consider what this signal choice implies for equilibrium. Recall that α (ω) denotes

the beauty contest best response given in (11). By the law of large numbers,∫
ω

α (ω)µ∗RZ (ω|s, ā) dω = α̂ (s, ā) .

That is, aggregation over actions given the agents’ optimal signal structure induces aggregate

action α̂ (s, ā). An equilibrium aggregate action function ᾱ ∈ Ā is a function defined by the

fixed point

ᾱ (s, r, z) = {ā ∈ R|ā = α̂ (s, ā)}

and must therefore be s-measurable.

4.4 RZ non-monotonicity

The sufficient conditions in Proposition 3 are stronger than necessary. We do not need

divergences to be RZ-monotone on all priors. Instead, it is sufficient for divergences to be

RZ-monotone on all priors that may occur in equilibrium given an s-measurable ᾱ function.

We define the space of all probability measures that may be generated on S×R×Z× Ā
by some pair (µ0, ᾱ) where ᾱ ∈ Ā is s-measurable as

Vs0 =
{
ν ∈ V0 : ∃ µ0 ∈ U0 and s-measurable ᾱ ∈ Ā s.t. ν = φĀ {µ0, ᾱ}

}
.

Therefore, we say the set Vs0 ⊆ V0 is the set of all priors that may be generated by s-
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measurable equilibria. In light of these definitions, we may weaken the conditions in

Proposition 3 as follows.

Proposition 4. Assume that payoffs {ui}i∈I satisfy Assumption 1, that cost functions

{Ci
Ω}i∈I satisfy Assumptions 2, 3, and 4, and that the associated divergences {Di}i∈I are

RZ-monotone on all priors ν0 ∈ Vs0 ⊆ V0. Then an s-measurable TSBNE of the game under

endogenous information (Definition 3) exists.

Proof. Follows from Proposition 3.

That is, we do not require RZ-monotonicity on all priors, only those that could be

generated from an s-measurable ᾱ function. Weakening the conditions in Proposition 3 is

instructive as it allows us to begin considering the converse.

We next define the “opposite” of RZ-monotonicity, relying on the “only-if” aspect of

Lemma (3). Consider any informative signal structure µRZ ∈ URZ,Ω; we say that a signal

structure µRZ ∈ URZ,Ω is informative if the distribution of signal realizations depends on the

values of (s, ā). We will say that a cost function CΩ is “generically RZ-non-monotone” if

the minimally informative signal structure ν̄ {µRZ} is not the least-costly of all the signal

structures that coarsen to µRZ , except at isolated points. Our use of the term generic follows

Geanakoplos and Polemarchakis [1986] and Farhi and Werning [2016].

Definition 6. A cost function CΩ satisfying Assumptions 2, 4, and 5 is generically RZ-

non-monotone if for all ν0 ∈ V0 and all signal structures µRZ ∈ URZ,Ω such that µRZ is

informative, there exists a ν ′ ∈ V ′Ω {µRZ} such that

Ci
Ω (ν ′, ν0) < Ci

Ω (ν̄ {µRZ} , ν0)

except on a possibly empty set of isolated priors ν0 ∈ V0.

We have defined generic RZ-non-monotonicity as a property of the cost functions C (as

opposed to of the divergences D) purely for convenience. Note that RZ-monotonicity and

generic RZ-non-monotonicity are not exhaustive classes of cost functions; cost functions

might exhibit R-monotonicity for some priors but not others. We have little to say about

whether s-measurable equilibria will or will not exist in this case.

Armed with this definition, let us first state our result and then give some examples to

explain its intuition.
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Proposition 5. Fix the set of types I and their action spaces {Ai}i∈I . Let {Ci}i∈I be a

set of information costs satisfying Assumptions 2, 3, and 5. Assume that for some type

i∗ ∈ I, Ci∗ is generically RZ-non-monotone on priors ν0 ∈ Vs0 ⊆ V0. Then there exist payoff

functions {ui}i∈I satisfying Assumption 1 such that s-measurable TSBNE exist only on a

possibly empty subset of isolated points in the space of priors, V0.

Proof. See the appendix, 7.7.

This result is stated in terms of the existence of a utility function. The reason for this

caveat is the possibility that non-invariance affects the distribution of agents’ actions, but

not the mean. This possibility opens the door to having equilibria in which individual agents

condition their actions on r, but the aggregate action function is nevertheless s-measurable.

We construct an example of a utility function that eliminates this possibility.

Using our definition of generic RZ-non-monotonicity, we construct an example satisfying

our assumptions for which s-measurable equilibria do not exist. In our example, the result is

intuitive: if agents choose to receive a noisy public signal r, their mistakes will be correlated,

and this will introduce non-payoff-relevant volatility into equilibrium aggregate actions.

4.5 Example: Generically RZ-non-monotone costs

We construct an example of a generically RZ-non-monotone cost function and use this to

explain why we interpret r as a common signal.

Take any signal structure (conditional probability) νj ∈ VΩ and prior ν0 ∈ V0; together

these induce a joint distribution given by ν̂j (ω, s, r, z, ā) = νj (ω|s, r, z, ā) ν0 (s, r, z, ā). Let

νrω {νj, ν0} denote the probability measure on S×Z×Ā conditional on r ∈ R,ω ∈ Ω induced

by {νj, ν0}

νjrω (s, z, ā) = νrω
{
νj, ν0

}
(s, z, ā) =

ν̂j (ω, s, r, z, ā)

πj (r, ω)
=
νj (ω|s, r, z, ā) ν0 (s, r, z, ā)

πj (r, ω)

where πj (r, ω) denotes the unconditional probability of state (r, ω) induced by {νj, ν0}. That

is πj (r, ω) =
∑

s∈S,z∈Z
∫
Ā
νj (ω|s, r, z, ā) ν0 (s, r, z, ā) dā. Similarly, let

ν0,r (s, z, ā) =
ν0 (s, r, z, ā)

π (r)

denote the probability measure on S × Z × Ā conditional on r ∈ R induced by the prior.
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We use these objects to build a divergence from a pair of KL divergences. Consider the

posterior-separable cost function associated with the divergence

D
(
νjω||ν0

)
= θ1DKL

(
νjω||ν0

)
+ θ2

∑
r∈R

π (r)DKL

(
νjrω||ν0,r

)
where θ1 and θ2 are positive constants. When θ2 = 0, this divergence is simply the KL

divergence. When θ2 > 0, there is an extra penalty for having a distribution conditional on

r under νjω that deviates from the distribution conditional on r under the prior ν0. In the

limit as θ2 → ∞, the cost to learn about r remains unchanged, but it becomes impossible

to learn anything aside from r. In this case, the signal structure ν̄ {µRZ} would be infinitely

costly for all informative signal structures µRZ . Consequently, it is preferable for the agent

to receive signals about r even though it is not payoff-relevant. Even away from this limit,

it will generally be cheaper for the agent to choose signal structures that vary in r instead

of using the signal structure ν̄ {µRZ}.
We interpret this cost function as capturing the idea of a noisy public signal. It is

comparatively cheap for agents to observe r as opposed to receiving their own signals about

the fundamentals s, although they will not perfectly observe either variable. As a result, if

such an agent were confronted with an aggregate action function ᾱ that was s-measurable,

she would nevertheless choose to receive signals about r. Because the realization of r is

common across all agents, this will introduce correlated errors into the agents’ inference

about s and hence their actions, resulting in best responses that are not s-measurable.

The two key features of this example, r being a cheap way of learning about s and r being

common across agents, are in our view the defining features of what is usually meant by a

noisy public signal. Note that this interpretation does not rely on the particular functional

form of our example; any cost function which makes it cheaper to learn about s by learning

about r than to learn about s directly will have this property.

The results and their limitations highlight different possible interpretations of r ∈ R.

We have suggested interpreting r ∈ R as a common signal. When this common signal is

about the fundamentals in a way that is directly relevant for the agent’s actions (the generic

R-non-monotonicity case), we should expect that the aggregate action is influenced by the

common signal. In contrast, if the common signal is about how informative other signals are,

we might expect it to affect the variance of individual actions but perhaps not to affect the

mean (the possibility ruled out in Proposition 5). Yet another possibility is that the common
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signal is a common signal about z ∈ Z. In this case, we might expect R-non-monotonicity

for most priors, but R-monotonicity in the special case in which the prior is s-measurable.

What all of these examples illustrate is the close connection between the cost functions Ci

and the nature of the common signal r ∈ R.

Consider our four example cost functions (mutual information, Tsallis, neighborhoods,

and LLR). As we have already shown, with mutual information, because it is invariant in

the information-geometric sense, is clearly RZ-monotone. Consequently, with mutual infor-

mation, s-measurable equilibria will exist. In contrast, Tsallis entropy is generically R-non-

monotone, and will generate s-measurable equilibria only if the conditional distribution of r

given s is uniform on its support for all s ∈ S (see Caplin et al. [2018]). The neighborhood

cost function is generically R-non-monotone except in the case that the topology imposes

no structure on R. Similarly, the LLR cost function is generically R-non-monotone unless

the distance function β is not in fact a function of r. For all of these cost functions, we gen-

erally expect that non-fundamental volatility will occur in equilibrium. Our interpretation

is that using the standard cost function (mutual information) often implicitly rules out the

possibility of common signals, which may or may not be justified depending on the economic

setting.

We next turn to questions of efficiency, and the connection between the cost functions

and informational externalities.

5 Efficiency

We begin by defining the planner’s problem for our game with exogenous information. The

planner takes can choose the strategies of the agents along with their signal structure to

maximize welfare, but is constrained in that she may not simply endow agents with infor-

mation or move information from one agent to another. We define the efficient allocation as

follows.

Definition 7. A strategy profile {νiA ∈ V iA}i∈I and aggregate action profile ᾱ ∈ Ā of the

game with exogenous information (Definition 2) is constrained efficient if, for some strictly

positive Pareto-weights {λi}i∈I , the strategies and are the solution to the problem

sup
{νiA∈V

i
BD(νiΩ)}i∈I ,ᾱ∈Ā

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

∫
Ā

[∫
Ai

ui
(
aj, ā, s

)
νjA
(
aj|s, r, z, ā

)
daj
]
ν0{µ0, ᾱ} (s, r, z, ā) dā
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subject to constraint of mean consistency,∫
Ai

ajνiA
(
aj|s, r, z, ᾱi (s, r, z)

)
daj = ᾱi (s, r, z) ∀i ∈ I, s ∈ S, r ∈ R, z ∈ Z, s.t.µ0 (s, r, z) > 0.

Note that these conditional distributions are indexed by types i, which enforces type-

symmetry as a constraint on the planner.

It is immediately apparent from this definition that a TSBNE with exogenous information

(Definition 2) will not necessarily be efficient. Agents do not internalize the impact that

their actions have on aggregate actions, which in turn affect the welfare of others. Of course,

pecuniary externalities of this form do not necessarily lead to inefficiency—as the classic

welfare theorems demonstrate.

To characterize these externalities, we focus on utility functions that are strictly con-

cave and differentiable, and are such that all optimal actions are interior.18 The following

proposition describes these externalities.

Proposition 6. Assume that Assumption 1 holds, and in addition that for all i ∈ I and

s ∈ S, ui(a, ā, s) is strictly concave in a for all ā ∈ Ā. Let ({νi∗A }i∈I , ᾱ∗) denote a solution to

the planner’s problem with strictly positive Pareto-weights {λi}i∈I , and assume in addition

that the support of νi∗A is a subset of the interior of Ai for all i ∈ I. Then ({νi∗A }i∈I , ᾱ∗) are

a TSBNE of the game with exogenous information if and only if, for all i ∈ I, (s, r, z) such

that µ0(s, r, z) > 0, and aj ∈ Ai such that π (aj; νi∗A , ν0{µ0, ᾱ
∗}) > 0,

∑
s∈S,r∈R,z∈Z

∫
Ā

(∑
i′∈I

∫
Ai′
λi
′ ∂ui

′ (
al, ā, s

)
∂āi

νi
′∗
A

(
al|s, r, z, ā

)
dal

)
νi∗A (aj|s, r, z, ā) ν0{µ0, ᾱ

∗}(s, r, z, ā)

π (aj; νi∗A , ν0{µ0, ᾱ∗})
dā = 0.

Proof. See the appendix, 7.8.

We think of these externalities as “distributed information externalities,” an interpreta-

tion we elaborate on in our examples. The basic idea is that agents in the game impact

each other through the effects that their actions have on the aggregate action, which enters

other agents’ utility functions. We use the moniker “distributed information” to indicate

an externality may arise even in settings, like a market economy, in which under full infor-

mation there are no externalities. The key idea here is that the impact of the price change

is evaluated not under the prior ν0 but under the posterior an agent of type i after taking

18The externalities exist without these assumptions, but are harder to characterize.
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action aj,
νi∗A (aj|s, r, z, ā) ν0{µ0, ᾱ

∗}(s, r, z, ā)

π (aj; νi∗A , ν0{µ0, ᾱ∗})
.

This posterior contains information that is not generally available to other agents (even of

the same type). As a result, agent j might realize that agent j′ is making a mistake, even if

agent j′ is behaving optimally given the realization of his own signals. The planner would

like agent j to take the mistake of agent j′ into account, and change her own behavior to

increase the utility of agent j′. In the single-type, linear-quadratic-Gaussian environment

studied by Angeletos and Pavan [2007], how the planner would like agent j to respond to

a signal is determined by a comparison between the social and private degrees of strategic

complementarity between the actions of agents j and j′. Our Proposition 6 is a generalization

of this result to our setting, along with a re-characterization of the externality as being related

to distributed information.

The primary focus of our analysis is not on these externalities, but on externalities related

to the cost of acquiring information. To isolate these externalities, we will assume away

the “distributed information pecuniary externalities” just described. Our next assumption

formalizes this.

Assumption 6. For all ᾱ ∈ Ā and {νiA ∈ V iĀ,A}i∈I satisfying the mean-consistency condition

(equation (15)), there exists a set of strictly positive Pareto-weights {λi}i∈I such that, for all

(s, r, z) ∈ S ×R× Z such that µ0(s, r, z) > 0,

ᾱ(s, r, z) ∈ arg max
ā∈Ā

∑
k∈I

∫
Ak

λiuk(al, ā, s)νkA
(
al|s, r, z, ā

)
dal. (20)

This assumption is a restriction on the utility functions and price functions. In the single-

agent case (when I is a singleton), we can explicitly characterize the functional form of the

utility function.

Proposition 7. Suppose that there is a single type of agent, I = {0}, that Assumptions 1

and 6 hold, and in addition that u0 is continuously twice-differentiable in its first argument.

Then there exists a convex function H : S×A0 → R and function G : S×A0 → R such that

u0(a, ā, s) = G(a; s) +H(ā; s) + (a− ā) · ∇H(ā; s) (21)

where ∇H(ā; s) denotes the gradient of H with respect to its first argument.
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Proof. See the appendix, 7.9.

The proof of this result relies on an analogy: the utility function u0 is, in some sense,

like a divergence between a and ā. That is, under Assumption 6, utility is highest when an

individual agent’s actions match the aggregate action (this follows from considering degen-

erate νkA distributions). Armed with this analogy and the results of Banerjee et al. [2005],

we derive the result. Note that this result applies only to the single-type case, which has

been the focus of most of the beauty contest literature. The multi-type case is more complex

because of the possibility of terms in utility functions that “cancel out” across types.

Our next proposition demonstrates that Assumption 6 is a sufficient condition for effi-

ciency under exogenous information.

Proposition 8. Assume that Assumption 1 holds. If Assumption 6 holds, then a constrained

efficient TSBNE of the game with exogenous information (Definition 7) exists for all possible

exogenous signal structures {νiΩ ∈ VĀ,Ω}i∈I .

Proof. See the appendix, 7.10.

The proof follows from the observation that, if we relax the planner’s problem of Def-

inition 7 by ignoring the mean-consistency constraint, the planner will (without loss of

generality) nevertheless choose to satisfy mean-consistency by Assumption 6. Consequently,

the conditions characterizing the planner’s choices for νiA are identical to those of private

agents.

Assumption 6 is not necessary for efficiency, because it applies to all conditional action

distributions νiA ∈ VĀ,Ω, even ones that (for example) place positive probability on dominated

actions. The stronger conditions of Proposition 6 allow us to provide an only-if result for

the efficiency of equilibria under exogenous information.

We now turn to the question of constrained efficiency with endogenous information. We

begin by defining the planner’s problem.

Definition 8. A TSBNE of the game with endogenous information (Definition 3) is con-

strained efficient if, for some strictly positive Pareto-weights {λi}i∈I , the strategies {νiA ∈ V iA}i∈I
and aggregate action profile ᾱ ∈ Ā are the solution to the problem

sup
{νiA∈V

i
A}i∈I ,ᾱ∈Ā

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

∫
Ā

[∫
Ai

ui
(
aj, ā, s

)
νjA
(
aj|s, r, z, ā

)
daj
]
ν0{µ0, ᾱ} (s, r, z, ā) dā

−
∑
i∈I

λiCi
A

(
νiA, ν0{µ0, ᾱ}

)
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subject to constraint of mean consistency,∫
Ai

ajνiA(aj|s, r, z, ᾱ (s, r, z))daj = ᾱi (s, r, z) ∀i ∈ I, s ∈ S, r ∈ R, z ∈ Z, s.t.µ0 (s, r, z) > 0.

Mirroring our definitions of equilibrium, the key difference between the endogenous infor-

mation case and exogenous information case is that with exogenous information, νiA must lie

in the convex set V iBD(νiΩ), but there is no utility cost, whereas in the endogenous information

there are no restrictions on νiA but there is a utility cost Ci.

This analysis also makes clear why, at least potentially, a new type of externality has been

introduced into the economy. The convex sets V iBD(νiΩ) did not depend on the aggregate

action function ᾱ; this is the typical assumption of one makes with exogenously given signals.

In contrast, the Ci function in general does depend on the ᾱ function, and therefore creates

another channel by which the actions of one agent affect the welfare of others. Note that

this distinction is not really about flexibility in information choice but instead about whether

information can be acquired about the endogenous actions of others. One could choose to

study economies with fixed, exogenously given signal structures who signal distributions

were sensitive to the actions of other agents. Classic models of moral hazard with observable

signals (e.g. Holmstrom et al. [1979]) are a leading example of this kind of economy.

However, there are cost functions for which these externalities vanish. In keeping with

the theme of the previous sections, we define “invariance with respect to Ā” along the same

lines as our previous definition of invariance with respect to ΦZ . We begin again by defining

a coarsening operation, γĀ : V0 → U0 by, for all s ∈ S, z ∈ Z, r ∈ R,

γĀ {ν} (s, r, z) =

∫
Ā

ν (s, r, z, ā) dā.

This coarsening operation throws away information about the conditional distribution of ā

given (s, r, z).

Furthermore, recall that the aggregate action function ᾱ defines a particular embedding

from U0 to V0 through the function φĀ {µ0, ᾱ} defined in (2), and that the set Ā defines

the set of all embeddings. Armed with a coarsening operation and a set of embeddings, we

define invariance with respect to Ā.

Definition 9. A divergence D : V0 × V0 → R+ is invariant with respect to Ā if for all
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ᾱ, ᾱ′ ∈ Ā and ν0, ν1 ∈ V0,

D (ν1||ν0) ≥ D (φĀ {γĀ {ν1} , ᾱ} ||φĀ {γĀ {ν0} , ᾱ}) = D (φĀ {γĀ {ν1} , ᾱ′} ||φĀ {γĀ {ν0} , ᾱ′}) ,
(22)

If all agents have cost functions associated with divergences that are invariant with re-

spect to Ā on (r,s)-measurable priors, then there are no externalities related to the cost

of information. To see this, consider the posteriors over V0 and U0 conditional on ω using

Bayes’ rule, νω {νj, ν0} and µω {νj, ν0}, and note that

γĀ
(
νω
(
νj, ν0{µ0, ᾱ}

))
= µω(νj, ν0{µ0, ᾱ})

and that

νω
(
νj, ν0{µ0, ᾱ}

)
= φĀ(µω(νj, ν0{µ0, ᾱ}), ᾱ).

Now suppose that νj does not depend on ā (νj ∈ VĀ,Ω). Under this assumption, which

is without loss of generality by Lemma 2, the unconditional probabilities πj{νj, ν0} and

posteriors µω(νj, ν0{µ0, ᾱ}) do not depend on ᾱ. If in addition the cost function Ci is

associated with a divergence that is invariant with respect to Ā, changing how the posteriors

µω are embedded into V0 does not affect the divergence. Consequently, Ci
Ω (νj, ν0{µ0, ᾱ}) =

Ci
Ω (νj, ν0{µ0, ᾱ

′}) for all νj ∈ VĀ,Ω and ᾱ, ᾱ′ ∈ Ā.

In other words, there is no channel by which one agents’ actions affect another agents’

cost of information. Consequently, if the economy is constrained efficient with exogenous

information (which is guaranteed by Assumption 6), it will be constrained efficient with

endogenous information.

At least in theory, invariance with respect to Ā is not necessary for efficiency, for three

reasons. First, it could be the case that multiple types in I have cost functions that are not

invariant with respect to Ā, and yet a Pareto-weighted sum of the cost functions is invariant

with respect to Ā. Second, it could be the case that the value of ᾱ satisfying mean-consistency

is always the minimizer of the cost function, even though the cost function in general depends

on ᾱ. Third, it could be the case that there are externalities associated with information

acquisition and externalities under exogenous information, but these externalities happen to

cancel. The following assumption summarizes these possibilities in a single condition.

Assumption 7. For all µ0 ∈ U0 and (r,s)-measurable ᾱ ∈ Ā, {νiA ∈ VĀ,Ω}i∈I satisfying

the mean-consistency condition (equation (15)), there exists a set of strictly positive Pareto-
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weights {λi}i∈I such that

ᾱ ∈ arg max
ᾱ′∈A

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ′ (s, r, z) , s

)
νiA
(
aj|s, r, z, ᾱ′ (s, r, z)

)
daj
]
µ0 (s, r, z)

−
∑
i∈I

λiCi
A

(
νiA, ν0{µ0, ᾱ}

)
.

This assumption essentially states that no externalities exist. It will hold by construction

if Assumption 6 holds and all of the cost functions Ci are invariant with respect to Ā, as well

as in the three cases discussed above. The following proposition argues that this assumption

(combined with assumptions that guarantee existence of an (r,s)-measurable equilibrium by

Proposition 2)

Proposition 9. Assume that Assumptions 1 and 7 hold, and that, for all i ∈ I, the cost

functions Ci satisfy Assumptions 2, 3, 4, and 5. Then there exists a TSBNE of the game

with endogenous information (Definition 3) that is also the solution to the planner’s problem

(Definition 8).

Proof. See the appendix, 7.11.

To study the inefficient equilibria, we introduce a notion of generic non-invariance. We

use the notation ∇ᾱC(νj, ν0{µ0, ᾱ}) to denote the gradient of C with respect to ᾱ, if it

exists.

Definition 10. A cost function Ci for type i ∈ I is generically non-invariant on Ā if, for

all informative νi ∈ VĀ,Ω and all µ0 ∈ U0, ᾱ ∈ Ā such that ᾱi and µi satisfy mean-consistency,

except on a possibly empty set of isolated values of (νj, µ0, ᾱ),

∇ᾱC
i
A

(
νi; ν0{µ0, ᾱ}

)
6= ~0.

With generic non-invariance, there will in general be an interaction between agent’s

actions and other agents’ cost of information. This leads to inefficiency, even when the

economy is efficient under exogenous information. We prove this in the special case of a

single type.

Proposition 10. Suppose that there is a single type of agent, I = {0}, and fix the action

space A0. Let C0 be an information cost satisfying Assumptions 2, 3, and 5, and assume in

addition that C0 is generically non-invariant on Ā. Then there exists a price function p and
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utility function u0 satisfying Assumptions 1 and 6 such that a constrained-efficient TSBNE

under exogenous information exists only on a possibly empty subset of isolated points in the

space of priors, U0.

Proof. See the appendix, 7.12.

Like Proposition 7, the difficulty of extending this result to multiple types arises because

of the possibility that individual types may have generically non-invariant cost functions and

yet the effects of a change in the aggregate action can “cancel out” across types.

Turning to our four examples, it is immediately apparent the the KL divergence, again

because of its general invariance, is invariant with respect to Ā on (r,s)-measurable priors.

Consequently, if the economy is efficient with exogenous information, it will also be efficient

under endogenous information acquisition if all agents have a KL divergence cost function.

Perhaps more surprisingly, the same property holds true for the Tsallis cost function, despite

that cost function not being invariant in the information-geometric sense. The reason this

property holds is (r,s)-measurability: because the distribution of ā conditional on (r, s) is

degenerate, the function HTS,ρ(ν) in fact depends only on the distribution of (r, s), and hence

is unaffected by changes in ᾱ. In contrast, the neighborhood based cost function, assuming

the topology imposes some structure on Ā, will be for most topologies be generically non-

invariant. Similarly, the LLR function, assuming the distance function depends on ā, will

be generically non-invariant for most distance functions. This difference between the Tsallis

and neighborhood/LLR cost functions arises because, although none of these cost functions

are invariant in the information-geometric sense, only the latter two incorporate the idea

that the values of ā have an inherent meaning.

6 Conclusion

In this paper, we have explored the relationship between cost functions and the properties

of equilibria in large games with rationally inattentive agents. Under the assumption of

posterior separability, we have demonstrated the close connection between certain kinds of

invariance and whether or not the equilibrium is efficient/exhibits non-fundamental volatility.

We have interpreted these forms of invariance as describing whether or not it is possible to

learn directly about the actions of others and whether or not public signals are available to

the agent. Efficiency holds only when it is not possible to learn directly about the actions of

others and there are no externalities under exogenous information; efficiency under exogenous
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information is related to what we call “dispersed information pecuniary externalities.” The

class of utility functions that rules out such externalities has a particular functional form

that generalizes the characterization of ? to games that are not necessarily linear-quadratic-

Gaussian.
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Appendix

7 Proofs

7.1 Proof of Lemma 1

For any signal structure ν ′,

Ci (ν ′; ν0) =

∫
Ωi

π′ (ω)Di (ν ′ω||ν0) dω

where

π′ (ω) = π {ν ′, ν0} (ω) =
∑

s∈S,r∈R,z∈Z

∫
Ā

ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā) dā,

ν ′ω (s, r, z, ā) = νω {ν ′, ν0} (s, r, z, ā) =
ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā)

π {ν ′, ν0} (ω)
,

and Di is invariant in ΦZ in the sense described by Assumption 5.

By definition of ν ′ ∈ V̄Ω {µZ},

µZ (ω|s, r, ā) =

∑
z∈Z [ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā)]

γZ (ν0 (s, r, z, ā))

Given this signal structure, the unconditional probability of observing ω ∈ Ω satisfies

π {ν ′, ν0} (ω) =
∑

s∈S,r∈R,z∈Z

∫
Ā

ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā) dā

=
∑

s∈S,r∈R

∫
Ā

[∑
z∈Z

ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā)

]
dā

=
∑

s∈S,r∈R

∫
Ā

[µZ (ω|s, r, ā) γZ (ν0 (s, r, z, ā))] dā

and therefore

π {ν ′, ν0} = π {ν̄, ν0} , ∀ν ′ ∈ V̄Ω {µZ} . (23)
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Further note that for all ω ∈ Ω,

γZ (ν ′ω (s, r, z, ā)) =

∑
z∈Z [ν ′ (ω|s, r, z, ā) ν0 (s, r, z, ā)]

π {ν ′, ν0} (ω)
,

=
µZ (ω|s, r, ā) γZ (ν0 (s, r, z, ā))

π {ν̄, ν0} (ω)

and hence is identical for all ν ′ ∈ V̄Ω {µZ}.
Define an embedding φZ such that

φZ (γZ (ν0)) = ν0;

this embedding’s corresponding conditional distribution function is given by

φ̂Z (z|s, r, ā) =
ν0 (s, r, z, ā)

γZ (ν0 (s, r, z, ā))
.

Applying this embedding to γZ (ν ′ω),

φZ (γZ (ν ′ω (s, r, z, ā))) = φ̂Z (z|s, r, ā) γZ (ν ′ω (s, r, z, ā))

=
ν0 (s, r, z, ā)

γZ (ν0 (s, r, z, ā))

µZ (ω|s, r, ā) γZ (ν0 (s, r, z, ā))

π {ν̄, ν0} (ω)

=
µZ (ω|s, r, ā) ν0 (s, r, z, ā)

π {ν̄, ν0} (ω)

Therefore

φZ (γZ (ν ′ω)) = ν̄ω ∀ν ′ ∈ V̄Ω {µZ} .

By Assumption 5,

D (ν ′ω||ν0) ≥ D (φZ (γZ (ν ′ω)) ||φZ (γZ (ν0))) = D (ν̄ω||ν0) .

Combining this with (23), we therefore have that

Ci (ν ′; ν0) ≥ Ci (ν̄, ν0) ∀ν ′ ∈ V̄Ω {µZ} .

as required.
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7.2 Proof of Lemma 2

We begin with the following observation: suppose that for some νjA, ν
j′

A ∈ V iA and ᾱ ∈ Ā,

and all (aj, s, r, z) ∈ Ai × S ×R× Z,

νjA(aj|s, r, z, ᾱ(s, r, z)) = νj
′

A (aj|s, r, z, ᾱ(s, r, z)).

Then, by Assumption 4,

Ci
A

(
νj
′

A , ν0{µ0, ᾱ}
)

= Ci
A

(
νj
′

A , ν0{µ0, ᾱ}
)
.

This result follows from the fact that signal distributions conditional on zero-probability

events have no impact on the unconditional signal probabilities or posteriors and posterior-

separability.

Consequently, it is without loss of generality to suppose that the signals νjA do not

depend on the value of ā conditional on (s, r, z). In other worse, we can restrict attention to

νjA ∈ V iĀ,A ⊂ V
i
A in both the endogenous and exogenous cases.

7.3 Proof of Proposition 1

Invoking the results of Lemma Lemma 2, it is without loss of generality to assume that

νiA ∈ V iĀ,A for all i ∈ I.

To handle both the exogenous information case and the endogenous information case,

define V̄ iA = V i
Ā,A

in the endogenous information case, and V̄ iA = V iBD(νiΩ) in the exogenous

information case. We begin by noting that V i
Ā,A

is a finite (by the finiteness of S × R × Z)

set of measures on the compact subsets of RL (i.e. Ai), by Assumption 1 (which assumes

compactness for Ai). Consequently, by Prokhorov’s theorem, using the topology of weak

convergence, V i
Ā,A

is compact. By equation (13), V iBD(νiΩ) is convex and compact (in the

topology of weak convergence) subset of V i
Ā,A

. Therefore, maxima exist, and note also that

the set of feasible policies is non-empty and does not depend on ᾱ.

To adapt the proof to the exogenous information case, suppose that in this case there is
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an information cost function Ci
A

(
νjA, ν0{µ0, ᾱ}

)
= 0. Individual optimality requires that

νiA ∈ max
νjA∈V̄

i
A

∑
s∈S,r∈R,z∈Z

∫
Ā

[∫
Ai

ui
(
aj, ā, s

)
νjA
(
aj|s, r, z, ā

)
daj
]
ν0{µ0, ᾱ} (s, r, z, ā) dā

− Ci
A

(
νjA, ν0{µ0, ᾱ}

)
,

and mean consistency requires that

∫
Ai

ajνiA(aj|s, r, z, ᾱi (s, r, z))daj = ᾱi (s, r, z) ∀i ∈ I, s ∈ S, r ∈ R, z ∈ Z, s.t.µ0 (s, r, z) > 0.

We apply the theorem of the maximum and Kakutani’s fixed point theorem in the usual

fashion. Observe by the continuity of ui (Assumption 1), and by Assumption 3 (the conti-

nuity of Ci), that the objective function of the individual agent’s problem is continuous in

(νia, ᾱ). Consequently, we can invoke the theorem of the maximum.

The optimal policy correspondence Ai∗ : Ā → V̄ iA is non-empty, upper semi-continuous,

and compact-valued. By the concavity of the objective function (due the convexity of the

cost function, Assumption 2), the optimal policy correspondence is convex.

Define Āi as the set of possible aggregate actions ᾱi : S × R × Z → Ai for type i ∈ I.

From the optimal policy correspondence, define the function f i : V̄ iA → Āi by

f i(νiA) =

∫
Ai

ajνiA(aj|s, r, z, ᾱ(s, r, z))daj.

Observe that f i is continuous and linear in νiA, and does not in fact depend on ᾱ.

Define the correspondence F : Ā → Ā by composing the correspondences Ai∗ and the

functions f i, and taking the product space of the resulting sets:

F (Ā) =
∏
i∈I

f i ◦ Ai∗(Ā).

By the upper semi-continuity of Ai∗ and continuity of f i, F is upper semi-continuous. By

the non-emptiness of Ai∗, F is non-empty. By the convexity of Ai∗ and the linearity of f i,

F is convex.

By the finiteness of S ×R×Z and the fact that Ā ⊆ RL×|I|, Ā is isomorphic to a subset

of R|S|×|R|×|Z|×L×|I|. Consequently, by Kakutani’s fixed point theorem, there exists a fixed
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point of the correspondence F . This fixed point, by construction, constitutes a TSBNE.

7.4 Proof of Proposition 2

The proof is essentially identical to our existence proof (Proposition 1), and we will refer

to the proof of that proposition rather than repeat most of the arguments. Let ĀRS ⊂ Ā
denote the subset of α functions that are (r,s)-measurable. Let V i

ĀZ,A
⊂ V iA denote the set

of signal structures who distributions do not in fact depend on either z or ā.

By Lemma 1 (characterizing invariance on ΦZ), the optimality policy correspondences

Ai∗ (defined in the proof of Proposition 1) are mappings from ĀRS to V i
ĀZ,A

. By construction,

the functions f i defined in the proof of Proposition 1 map conditional distributions in V i
ĀZ,A

to functions that are measurable on (r, s). Consequently, the mapping F defined in the proof

of Proposition 1 is a map from ĀRS to ĀRS.

The arguments for the upper semi-continuity, non-emptiness, and convexity of F apply

unchanged. It follows that a fixed point in ĀRS exists, and this fixed point constitutes an

(r,s)-measurable equilibrium.

7.5 Proof of Lemma 3

Part (i). The “if” part of the proof repeats the proof of Lemma 1. We simply coarsen in

both r and z to the (s, ā) space and then embed back to the larger (s, r, z, ā) space using

the ηRZ function.

Part (ii). We prove the “only if” by contradiction. Suppose there exists ν0, ν1 ∈ V0 with

γRZ {ν1} � γRZ {ν0} such that

D (ν1||ν0) < D (ηRZ (ν1, ν0) ||ν0) .

Define Ω = {ω1, ω2} and define, for ε > 0 sufficiently small, the signal structure µRZ,ε as

follows

µRZ,ε (ω1|s, ā) = δ (ω1) ε
γRZ {ν1} (s, r, z, ā)

γRZ {ν0} (s, r, z, ā)
= δ (ω1) ε

∑
r∈R,z∈Z ν1 (s, r, z, ā)∑
r∈R,z∈Z ν0 (s, r, z, ā)
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and

µRZ,ε (ω2|s, ā) = δ (ω2)

(
1− εγRZ {ν1} (s, r, z, ā)

γRZ {ν0} (s, r, z, ā)

)
= δ (ω2)

(
1− ε

∑
r∈R,z∈Z ν1 (s, r, z, ā)∑
r∈R,z∈Z ν0 (s, r, z, ā)

)
,

where δ(·) is the Dirac delta function. Note that

ηRZ {ν1, ν0} (s, r, z, ā) = ν0 (s, r, z, ā)

∑
r∈R,z∈Z ν1 (s, r, z, ā)∑
r∈R,z∈Z ν0 (s, r, z, ā)

Therefore

µRZ,ε (ω1|s, ā) = δ (ω1) ε
ηRZ {ν1, ν0} (s, r, z, ā)

ν0 (s, r, z, ā)

and

µRZ,ε (ω2|s, ā) = δ (ω2)

(
1− εηRZ {ν1, ν0} (s, r, z, ā)

ν0 (s, r, z, ā)

)
,

Next, consider the minimally-informative signal structure ν̄ {µRZ,ε} is given by

ν̄ {µRZ,ε} (ω|s, r, z, ā) = µRZ,ε (ω|s, ā) .

for all s ∈ S, r ∈ R, z ∈ Z, ā ∈ Ā, ω ∈ Ω. Posteriors of the minimally-informative signal

structure are given by

νω1 {ν̄ {µRZ,ε} , ν0} = ηRZ {ν1, ν0}

νω2 {ν̄ {µRZ,ε} , ν0} =
1

1− ε
ν0 −

ε

1− ε
ηRZ {ν1, ν0} .

Now consider instead an alternative signal structure

ν ′ε (ω1|s, r, z, ā) = δ (ω1) ε
ν1 (s, r, z, ā)

ν0 (s, r, z, ā)
,

ν ′ε (ω2|s, r, z, ā) = δ (ω2)

(
1− εν1 (s, r, z, ā)

ν0 (s, r, z, ā)

)
.

By construction ν ′ε ∈ V ′Ω {µRZ,ε}. Posteriors given this signal structure are given by

νω1 {ν ′ε, ν0} = ν1

νω2 {ν ′ε, ν0} =
1

1− ε
ν0 −

ε

1− ε
ν1.
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The cost of signal structure ν̄ {µRZ,ε} is given by,

C (ν̄ {µRZ,ε} , ν0) = εD (ηRZ {ν1, ν0} ||ν0) + (1− ε)D
(
ν0 −

ε

1− ε
(ηRZ {ν1, ν0} − ν0)

∥∥∥∥ ν0

)
,

and the cost of signal structure ν ′ε is likewise given by,

C (ν ′ε, ν0) = εD (ν1||ν0) + (1− ε)D
(
ν0 −

ε

1− ε
(ν1 − ν0)

∥∥∥∥ ν0

)
.

Now consider the difference between these two cost structures:

f (ε) ≡ C (ν ′ε, ν0)− C (ν̄ {µRZ,ε} , ν0) .

By assumption, D (ν ′||ν0) is differentiable with respect to ν ′ at ν ′ = ν0, and the gradient

must be zero by the definition of the divergence. Therefore, f (ε) is differentiable with respect

to ε at ε = 0+ and

f ′ (ε) |ε=0+ = D (ν1||ν0)−D (ηRZ {ν1, ν0} ||ν0) < 0.

But we must have that

C (ν ′ε, ν0)− C (ν̄ {µRZ,ε} , ν0) ≥ 0

for all feasible ε ≥ 0, and f (0) = 0, contradicting the premise thatD (ν1||ν0) < D (ηRZ (ν1, ν0) ||ν0) .

7.6 Proof of Proposition 3

The proof is essentially identical to our existence proof (Proposition 1) and the proof of

Proposition 2, and we will refer to the existence proof (Proposition 1) rather than repeat

most of the arguments. Let ĀS ⊂ Ā denote the subset of α functions that are s-measurable.

Let V i
ĀRZ,A

⊂ V iA denote the set of signal structures who distributions do not in fact depend

on any of r, z, ā.

By Lemma 3 (characterizing RZ-monotonicity), the optimality policy correspondences

Ai∗ (defined in the proof of Proposition 1) are mappings from ĀS (inducing s-measurable

priors) to V i
ĀRZ,A

. By construction, the functions f i defined in the proof of Proposition 1 map

conditional distributions in V i
ĀRZ,A

to functions that are measurable on s. Consequently, the

mapping F defined in the proof of Proposition 1 is a map from ĀS to ĀS.
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The arguments for the upper semi-continuity, non-emptiness, and convexity of F apply

unchanged from the proof of Proposition 1. It follows that a fixed point in ĀS exists, and

this fixed point constitutes an s-measurable equilibrium.

7.7 Proof of Proposition 5

The utility functions for all types except i∗ are irrelevant for the argument, and can be chosen

arbitrarily.

Suppose that the type i∗ has a utility function that is strictly convex on Ai∗ for all (p, s).

By the convexity and compactness of Ai∗, extreme points exist, and by the strict convexity

of the utility function, all a ∈ Ai∗ that are not extreme points are strictly dominated by a

mixed strategy over extreme points. Consequently, the agents of type i∗ will only choose

actions that are extreme points. Note that this example essentially converts the set of actions

for type i∗ into a finite set.

Now suppose that in a neighborhood of some µ0 ∈ U0, there are at least two priors

µ1, µ2 ∈ U0 such that an s-measurable equilibrium exists, and let α1 and α2 denote the

corresponding s-measurable functions. By the definition of generic RZ-non-monotonicity,

the agents of type i∗ must respond to (µ1, α1) and (µ2, α2) by choosing some µi1, µ
i
2 ∈ U iA

such that, for at least one of the µi1, µ
i
2, the distribution of aj ∈ Ai∗ depends on r. Suppose

without loss of generality this holds for µi1.

Because this distribution has support only on the extreme points of Ai∗, the mean value∫
Ai∗

ajµi
∗

1 (aj|s, r, z)daj

is unique for all conditional distributions µi
∗

1 (aj|s, r, z). Consequently, because µi
∗

1 (aj|s, r, z) 6=
µi
∗

1 (aj|s, r′, z) for some r, r′ ∈ R, the mean actions ᾱi
∗
(s, r, z) and ᾱi

∗
(s, r′, z) must differ,

contradicting the existence of an s-measurable equilibrium. Therefore, if an s-measurable

equilibrium exists, it must be an isolated value of µ0.

7.8 Proof of 6

Observe first that, by νiA ∈ V iBD(νiΩ), the conditional distributions of νiA do not depend on

ā. Consequently, the Lagrangean version of the planner’s problem can be written as
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sup
{νiA∈V

i
BD(νiΩ)}i∈I ,ᾱ∈Ā

inf
ψ∈R|S|×|R|×|Z|×|I|×L

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ(s, r, z), s

)
νiA
(
aj|s, r, z, ᾱ(s, r, z)

)
daj
]
µ0 (s, r, z, ā)

+
∑
i∈I

L∑
l=1

∑
s∈S,r∈R,z∈Z

λiµ0 (s, r, z)ψil(s, r, z)[ᾱil(s, r, z)−
∫
Ai

ajl ν
i
A

(
aj|s, r, z, ᾱ(s, r, z)

)
daj].

Note that we have scaled the multiplier by µ0 (s, r, z) to denote that the policy need not hold

for (s, r, z) not in the support of µ0.

By strict concavity, there is a single action aj for each signal realizations ωj. Recall that

the proposition assumes interior solutions.

The first-order condition for ail(ω
j) is

λi
∑

s∈S,r∈R,z∈Z

∫
Ā

∂ui (a, ā, s)

∂al
|a=ajν

i∗
A

(
aj|s, r, z, ᾱ(s, r, z)

)
µ0 (s, r, z)

−
∑

s∈S,r∈R,z∈Z

λiµ0 (s, r, z)ψil(s, r, z)νi∗A
(
aj|s, r, z, ᾱ(s, r, z)

)
= 0.

The first-order condition for ᾱil(s, r, z) is(∑
i′∈I

∫
Ai′
λi
′ ∂ui

′
(al, ā, s)

∂āil
|ā=ᾱ∗(s,r,z)ν

i′∗
A

(
al|s, r, z, ᾱ(s, r, z)

)
dal

)
µ0(s, r, z)

+λiµ0 (s, r, z)ψil(s, r, z) = 0.

In contrast, the private FOC for ail(ω
j) is

∑
s∈S,r∈R,z∈Z

∂ui (a, ā, s)

∂al
νiA
(
aj|s, r, z, ᾱ(s, r, z)

)
µ0 (s, r, z) = 0.

By strict concavity, it follows from the private and social FOCs for ail(ω
j) that efficiency will

hold if and only if, for all i and aj ∈ Ai such that π (aj; νiA, ν0) > 0,

∑
s∈S,r∈R,z∈Z

λiµ0 (s, r, z)ψil(s, r, z)νi∗A
(
aj|s, r, z, ᾱ(s, r, z)

)
= 0.
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By the FOC for ᾱil(s, r, z), we must have

∑
s∈S,r∈R,z∈Z

(∑
i′∈I

∫
Ai′
λi
′ ∂ui

′
(al, ā, s)

∂āil
|ā=ᾱ∗(s,r,z)ν

i′∗
A

(
al|s, r, z, ᾱ(s, r, z)

)
dal

)
µ0(s, r, z)νi∗A

(
aj|s, r, z, ᾱ(s, r, z)

)
= 0

which is the result.

7.9 Proof of Proposition 7

Define the function

f(a, ā; s) = u0(a, a, s)− u0(a, ā, s).

Consider the degenerate distribution, for some (s, r, z) ∈ S ×R×Z such that µ0(s, r, z) > 0

and some a′ ∈ A0,

µ0
A (a|s, r, z) = δ(a− a′),

where δ(·) is the Dirac delta function. To satisfy mean consistency, we must have ā(s, r, z) =

a′. By Assumption 6,

a′ ∈ arg max
ā
u0(a′, p(s, ā), s)

and therefore

a′ ∈ arg min
ā
f(a′, ā; s)

and f(a′, a′; s) = 0 by construction. Consequently, f(a′, a′; s) is a weakly positive, con-

tinuously differentiable function, continuously twice-differentiable in its first argument. By

Assumption 6, for all measures µ0
A(a|s, r, z),∫

A0

aµ0
A(a|s, r, z)da ∈ arg min

ā∈A0

∫
A0

f(a, ā; s)µ0
A(a|s, r, z)da.

By theorem 4 of Banerjee et al. [2005] (see also the discussion in that paper on restrictions

to subspaces of RL), it follows that

f(a, ā; s) = H(a; s)−H(ā; s)− (a− ā) · ∇H(ā; s).

Defining

G(a; s) = u0(a, p(s, a), s)−H(a; s)

proves the result.
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7.10 Proof of Proposition 8

Recall the definition of the planner’s problem:

sup
{νjA∈V

i
BD(νiΩ)}i∈I ,ᾱ∈Ā

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ (s, r, z) , s

)
νiA
(
aj|s, r, z, ᾱ (s, r, z)

)
daj
]
µ0 (s, r, z) ,

subject to the mean consistency constraint.

Now consider a relaxed version of the problem, without the mean consistency constraint.

Let ({νi∗A }i∈I , ᾱ∗) denote the solutions to the relaxed problem. By Assumption 6 that there

exists some strictly positive Pareto weights such that it is without loss of generality to assume

that ᾱ∗ satisfies the mean-consistency condition.

By optimality in the relaxed problem, for each i ∈ I,

νi∗A ∈ arg max
νjA∈V

i
BD(νiΩ)

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ∗ (s, r, z) , s

)
νiA
(
aj|s, r, z, ᾱ∗ (s, r, z)

)
daj
]
µ0 (s, r, z) .

By the assumption of strictly positive Pareto weights, it immediately follows that ({νi∗A }i∈I , ᾱ∗)
constitutes a TSBNE.

7.11 Proof of 9

Recall the definition of the planner’s problem, applying Lemma 2:

sup
{νiA∈V

i
Ā,A
}i∈I ,ᾱ∈Ā

∑
i∈I

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ (s, r, z) , s

)
νiA
(
aj|s, r, z, ᾱ (s, r, z)

)
daj
]
µ0 (s, r, z)

−
∑
i∈I

λiCi
A

(
νiA, ν0{µ0, ᾱ}

)
,

subject to the mean consistency constraint.

Now consider a relaxed version of the problem, without the mean consistency constraint.

Let ({νi∗A }i∈I , ᾱ∗) denote the solutions to the relaxed problem, which exist by the continuity

assumptions. By Assumption 7, for the Pareto-weights defined in that assumption, it is

without loss of generality to suppose that ᾱ∗ satisfies the mean-consistency condition.
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By optimality in the relaxed problem, for each i ∈ I,

νi∗A ∈ sup
νiA∈V

i
Ā,A

λi
∑

s∈S,r∈R,z∈Z

[∫
Ai

ui
(
aj, ᾱ∗ (s, r, z) , s

)
νiA
(
aj|s, r, z, ᾱ∗ (s, r, z)

)
daj
]
µ0 (s, r, z)

− λiCi
A

(
νiA, ν0{µ0, ᾱ

∗}
)
,

By the assumption of strictly positive Pareto weights, it immediately follows that ({νi∗A }i∈I , ᾱ∗)
constitutes a TSBNE.

7.12 Proof of 10

Suppose that only one dimension of the individual and aggregate actions is relevant for

utilities. Suppose that u0 has the functional form described in Proposition 7, and assume

strict concavity with respect to the first argument of the utility function.

The Lagrangean version of the planner’s problem is, using 2,

sup
ν0
A∈V

0
Ā,A

,ᾱ∈Ā
inf

ψ∈R|S|×|R|×|Z|×|I|×L

∑
s∈S,r∈R,z∈Z

[∫
A0

u0
(
aj, ᾱ (s, r, z) , s

)
µ0
A

(
aj|s, r, z, ᾱ (s, r, z)

)
daj
]
µ0 (s, r, z)

− C0
A

(
ν0
A, ν0{µ0, ᾱ}

)
+

L∑
l=1

∑
s∈S,r∈R,z∈Z

µ0 (s, r, z)ψ0
l (s, r, z)[ᾱ0

l (s, r, z)−
∫
Ai

ajlµ
0
A

(
aj|s, r, z

)
daj].

Note that we have scaled the multiplier by µ0 (s, r, z) to denote that the policy need not hold

for (s, r, z) not in the support of µ0.

By strict concavity, there is a single action aj for each signal realizations ωj. By adjusting

the utility function to penalize actions on the boundaries of Ai
∗
, we can guarantee interior

solutions, and it is also straightforward to ensure that the support of π (aj; ν0
A, ν0) is non-

degenerate. The first-order condition for ai
∗

l (ωj) is

∑
s∈S,r∈R,z∈Z

∂u0 (a, ᾱ (s, r, z) , s)

∂al
|a=ajν

0
A

(
aj|s, r, z, ᾱ (s, r, z)

)
µ0 (s, r, z)

−
∑

s∈S,r∈R,z∈Z

µ0 (s, r, z)ψ0
l (s, r, z)ν0

A

(
aj|s, r, z, ᾱ (s, r, z)

)
= 0.

59



The first-order condition for ᾱ0
l (s, r, z) is (if the gradient ∇ᾱ exists),(∫

Ai∗

∂u0(al, p(s, ā), s)

∂ā0
l

|ā=ᾱ(s,r,z)ν
0
A

(
al|s, r, z, ᾱ (s, r, z)

)
dal
)
µ0(s, r, z)

−∇ᾱ0
l
C0
A

(
ν0
A, ν0{µ0, ᾱ}

)
{s, r, z}

+µ0 (s, r, z)ψ0
l (s, r, z) = 0,

why simplifies by Proposition 21 to

µ0 (s, r, z)ψ0
l (s, r, z) = ∇ᾱ0

l
C0
A

(
ν0
A, ν0{µ0, ᾱ}

)
{s, r, z}.

In contrast, the private FOC for ail(ω
j) is

∑
s∈S,r∈R,z∈Z

∂u0 (a, ᾱ (s, r, z) , s)

∂al
|a=ajν

0
A

(
aj|s, r, z, ᾱ (s, r, z)

)
µ0 (s, r, z) = 0.

By strict concavity, efficiency requires

0 =
∑

s∈S,r∈R,z∈Z

ν0
A

(
aj|s, r, z, ᾱ(s, r, z)

)
∇ᾱ0

l
C0
A

(
ν0
A, ν0{µ0, ᾱ}

)
{s, r, z}

for all aj such that π (aj; ν0
A, ν0) > 0. To extend the argument to the non-differentiable case,

observe that efficiency requires the existence of the derivative.

By generic non-invariance on Ā, this is non-zero except at isolated values of (ν0
A, µ0, ᾱ).

The policies that solve the planner’s problem are upper semi-continuous in µ0 by the usual

theorem of the maximum arguments, and consequently constrained efficiency holds only at

isolated values of µ0.
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