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Lecture 1

1 A SIMPLE, ONE SECTOR, STOCHASTIC GROWTH
MODEL

1.1 The economic environment

• A single good, single input (capital), representative agent model

• Who operates in this economy, what objectives they have, what opportunities (constraints)

they face and how they go about to satisfy their objectives

A representative agent

• Objectives (preferences):

U = E0

∞∑

0

βtu(ct) 0 ≤ β ≤ 1 (1)

u(ct) =
1

1− γ
c1−γ
t γ ≥ 0 (2)

• Opportunities (production):

f(kt) = ztk
α
t 0 < α ≤ 1 (3)

– Physical capital depreciates at the rate of δ per period

– Stochastic technology:

zt+1 = zρ
t vt+1 vt+1 iid 0 ≤ ρ ≤ 1 (4)

– Information: vt becomes known in period t

• Mode of behavior: Rational pursuit of objectives.

Rational expectations
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1.2 Optimization

In the absence of distortions there is an equivalence between the solution to the problem faced by

the social planner and the solution obtained in a competitive equilibrium. It saves on notation to

use a fictitious social planner who maximizes the utility of a representative agent subject to the

resource constraint of the economy

In particular, the value function is

V (kt, zt) = max{u(ct) + βEtV (kt+1, zt+1) (5)

where Et is conditional expectation taken in period t and kt and zt are the state variables. The

resource constraint is

f(kt) = ct + it (6)

The capital stock evolves as follows

kt+1 = (1− δ)kt + it (7)

Combining (6) and (7) we have

kt+1 = (1− δ)kt + f(kt)− ct (8)

The objective is to maximize (5) subject to (32) and (31) by selecting the optimal sequence {ct,

kt+1}∞t=0. Let λt be the Langrange multiplier associated with (32). The FOC (Euler equations) are

uct = λt (9)

βEtVkt+1 = λt (10)

Noting that Vkt+1 = λt+1(fkt+1 + 1− δ) and combining (9) and (10) leads to

βEtuct+1(fkt+1 + 1− δ) = uct (11)

Equations (31), (32) and (33) describe the dynamics of the system. Substituting from (2)

and (3) we arrive at a system of three nonlinear, stochastic first order difference equations. As this

system cannot be solved explicitly we need to consider solutions to a tractable, approximate version
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of it1. There exist several ways of carrying out this approximation (grid, projection method,...). For

the time being we will restrict attention to a simple linear approximation around the deterministic

steady state of the model. Let us write (31), (32) and (33) as

g0(zt, zt+1, vt+1) = 0 (12)

g1(ct, kt, kt+1, zt) = 0 (13)

Etg2(ct, ct+1, kt+1, zt+1) = 0 (14)

The first thing we need to do is to calculate the deterministic steady state of the system. That

is the values k = kt = kt+1 and c = ct = ct+1 with zt = zt+1 = z = 1 that satisfy (12), (13) and

(14). It can be easily verified that

k = (
β−1 + δ − 1

α
)

1
α−1

and

c = (k)α − δk

Taking a (log) first order Taylor approximation of (12), (13) and (14) around k, c and z we

have

z′t+1 = ρz′t + v′t+1 (15)

A1c′t + A2k′t + A3k′t+1 + A4z′t = 0 (16)

B1c′t + EtB2c′t+1 + B3k′t+1 + EtB4z′t+1 = 0 (17)

where the A’s and B’s are functions of α, β, δ, γ, ρ, k, c, z and thus known numbers, and c′t = (ct−c)/c

and so on. Equations (15,16,17) form a system of three stochastic, first order, linear difference

equations.
1Another way of dealing with non-linearity is to do the approximation before taking the FOCs. Either start with

(1) and (2) but proceed to approximate them by a quadratic polynomial for (1) and a linear function for (2). Or
assume from the beginning a quadratic utility and linear production functions. In either case the FOCs are linear.
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The agents only need information on kt and zt in order to decide how much to consume and

invest in period t. k and z are the state variables of the system (the former is endogenous while

the latter is exogenous). It is then reasonable to assume that their decisions take the form (if we

are wiling to rule out sunspots, bubbles)

k′t+1 = h1(k′t, z
′
t) c′t = h2(k′t, z

′
t)

Our objective is to determine the functions h1 and h2. There are several ways of doing so and hence

for solving for the variables of interest, c′t and k′t+1.

1.3 Solution

1.3.1 I. The method of undetermined coefficients

This is a simple method. It may become cumbersome-infeasible if the system is too large because

it may require the simultaneous solution of many high order polynomials. For fairly small systems

it usually works fine (sometimes one may have to use some tricks to reduce the order of the system

to be solved).

Let us assume that

h1(k′t, z
′
t) = e1k′t + e2z′t (18)

h2(k′t, z
′
t) = e3k′t + e4z′t (19)

(there is no constant term because everything is measured as deviations from the steady state).

Substituting (18) and (19) into (16) and (17) and noting that Etc
′
t+1 = Eth2,t+1 and Etz

′
t+1 = rz′t

we arrive at

M1k′t + M2z′t = 0 (20)

M3k′t + M4z′t = 0 (21)

where the Mj s will in general be polynomial functions of the parameters of interest, e1, e2, e3, e4. For

(20) and (21) to hold for all values of k′ and z′ it is required that M1 = M2 = M3 = M4 = 0. We

thus have four equations in four unknowns that can be solved to determine the policy functions

h1and h2.
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1.3.2 II. The method of R. Farmer

Consider again the linearized system of equations (15,16,17). This system can be written as




r 0 0
A4 A2 A1
0 0 B1







z′t
k′t
c′t


 =




1 0 0
0 A3 0
B4 B3 B2







z′t+1

k′t+1

c′t+1


 +




1 0 0 0
0 0 0 0
0 B4 0 B2







v′t+1

w′zt+1

w′kt+1

w′ct+1




(22)

where w′ct+1 = Et(c′t+1)− c′t+1(and so on) or, writing it in a more compact form

R1s′t = R2s′t+1 + R3n′t+1 (23)

If R1 is non singular then we multiply (23) through by R1−1 to arrive at

s′t = W1s′t+1 + W2n′t+1 (24)

Vaughan (1970) has developed a method for solving equations such as this one. It involves

transforming W1 into Jordan canonical form. In particular, W1 can be written as

W1 = CJC−1 (25)

where J is a diagonal matrix with elements the eigenvalues of W1 and C is the matrix whose

columns are the eigenvectors of W1. The roots (eigenvalues) of W1 determine the type of solution.

Let m be the number of state (”predetermined”) variables in the system (in our case there are two,

k and z). If the number of eigenvalues that lie outside the unit circle is equal to m then a unique,

rational expectations, stationary solution exists; if it is greater than m then there exist multiple

stationary equilibria; and if it is smaller than m then no stationary solution exists. Hence, in our

case we need two roots outside and one inside the unit circle to have a unique equilibrium. Suppose

that the parameters of the model are such that this is indeed the case.

Let us use (25) in (24), multiply through by C−1 and then take expectations. The transformed

system now takes the form

xt = JEtxt+1 (26)

where the first element (row) of x, say, x1, is simply the product of the first row of C−1 times

the vector column (z′t, k′t, c′t) and so on. Note that the element (row) of xt that corresponds to the
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eigenvalue that lies inside the unit circle has a very interesting property. Namely, it has to be

equal to zero because -as can be easily seen by recursively substituting for the expectation in the

RHS- the corresponding right hand side is equal to zero. But each element of x defines a linear

relationship between c′t, k′t and z′t. Subsequently,we have managed to get a solution for c′ in terms

of k′ and z′. Substituting this solution into (16) we get a solution for k′t+1. Voila.

III. The Blanchard-Khan method

This is the same method as that employed by Farmer. Substituting equation (15) into (16,17)

and making sure that we have the state variables at the top and then the endogenous variables

produces the following system

(
A3 0
B3 B2

) (
k′t+1

Etc
′
t+1

)
=

(
A2 A1
0 B1

)(
k′t
c′t

)
+

(
A4
rB4

)
z′t (27)

Or written more compactly -after having multiplied by the inverse of the first matrix on the

LHS-

(
k′t+1

Etc
′
t+1

)
= P

(
k′t
c′t

)
+ P1z′t (28)

The solution method involves writing P in its canonical form P = C−1JC, calculating the

eigenvalues and eigenvectors of P, decomposing J and C so that the eigenvalues outside the circle

(hopefully one in our case, in order to have a unique solution, note how eq. 28 differs from eq. 24)

appear at the top and then using equation (2) from Blanchard and Khan to compute the solution

for c′t and k′t+1.

A complication arises when the system does not consist of first order difference equations. In

such a case the method of Farmer (or Blanchard and Khan or King, Plosser and Rebello) is not

directly applicable. One must then first reduce the order of the system by suitable transformations

(such as defining lagged values as new variables and so on). Note though that while such reduction

may be possible most of the time, it is sometimes infeasible.

For instance, suppose that you solved the maximization problem by substituting (32) (for ct)and

(31) in (5) and then linearized around the steady state. The resulting solution would take the form

of a linear second order difference equation

Y 1k′t + Y 2k′t+1 + Y 3Etk
′
t+2 + Y 4z′t = 0 (29)

wher Yi are constants. Equation (29) can be written in the form of equation (27) (or equivalently,

(22)) by introducing a new variable x′t+1 = k′t+2
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(
Y 2 Y 3
1 0

)(
k′t+1

Etx
′
t+1

)
=

( −Y 1 0
0 1

)(
k′t
x′t

)
+

( −Y 4
0

)
z′t (30)

Another complication arises when the matrix on the LHS of 27 is singular. In this case, one

cannot multiply by its inverse to get the system into the form 28. There are several alternatives in

this case:

a) Carry out successive substitutions in the system of equations until this matrix has become

non-singular (get rid of some of the variables).

b)Use methods that rely on generalized eigenvalue decomposition (rather than the Jordan form).

Klein, JEDC provides a description (as well as the matlab codes for this solution method).

1.4 Using dynare to solve the system

Recall that our system consists of equations 31, 32 and 33:

zt+1 = zρ
t vt+1 (31)

kt+1 = (1− δ)kt + f(kt)− ct (32)

βEtuct+1(fkt+1 + 1− δ) = uct (33)

Using the particular functional forms for production and utility postulated above and taking

logs in eq. 31 gives

logzt+1 − ρlogzt − logvt+1 = 0 (34)

ct + kt+1 − (1− δ)kt − ztk
α
t = 0 (35)

c−γ
t − βc−γ

t+1(zt+1αkα−1
t+1 + 1− δ) = 0 (36)

Dynare prefers a somewhat different timing convention, with kt representing the choice variable

rather than the state variable in t. That is,

logzt − ρlogzt−1 − logvt = 0 (37)

ct + kt − (1− δ)kt−1 − ztk
α
t−1 = 0 (38)

c−γ
t − βc−γ

t+1(zt+1αkα−1
t + 1− δ) = 0 (39)
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We typically take log-linear approximations so that the deviations from the steady state are

expressed in percentage terms. The file model 1.mod generates the solution (the file model 1 sym.m

offers an equivalent solution using Klein’s matlab code).
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